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COURSE OBJECTIVES
The course objectives are:
1. To introduce the student to the coordinate system and its implementation to
electromagnetics.
2. To elaborate the concept of electromagnetic waves and transmission lines, and their practical

applications.

3. Tostudy the propagation, reflection, and transmission of plane waves in bounded unbounded
media.

4. To present the concepts of transmission lines, and this is a prerequisite course for
“Antennas”

UNIT - I:

Electrostatics: Review of coordinate system, Coulomb’s Law, Electric Field Intensity - Fields due to
Different Charge Distributions, Electric Flux Density, Gauss Law and Applications, Electric Potential,
Relations Between E and V, Maxwell’'s Equations for Electrostatic Fields, , Continuity Equation,
Relaxation Time, Poisson's and Laplace's Equations lllustrative Problems.

UNIT - Il

Magnetostatics: Biot - Savart's Law, Ampere's Circuital Law and Applications, Magnetic Flux Density,
Maxwell's Equations for Magnetostatic Fields, Magnetic Scalar and Vector Potentials, Forces due to
Magnetic Fields, Ampere's Force Law,

Maxwell's Equations (Time Varying Fields): Faraday's Law, Inconsistency of Ampere's Law and
Displacement Current Density, Maxwell's Equations in Different Final Forms, Conditions at a Boundary
Surface: Dielectric - Dielectric, lllustrative Problems.

UNIT - il

EM Wave Characteristics: Wave Equations for Conducting and Perfect Dielectric Media, Uniform
Plane Waves - Definition, All Relations Between E & H , Reflection and Refraction of Plane Waves -
Normal for both perfect Conductor and perfect Dielectrics, Brewster Angle, Critical Angle and Total
Internal Reflection, Poynting Vector and Poynting Theorem , lllustrative Problems.

UNIT - IV:

Transmission Lines - I: Types, Parameters, Transmission Line Equations, Primary & Secondary
Constants, Expressions for Characteristics Impedance, Propagation Constant, Phase and Group
Velocities, Infinite Line Concepts, , Distortion - Condition for Distortionless Transmisssion and
Minimum Attenuation, lllustrative Problems.

UNIT-V:
Transmission Lines - ll: SC and OC Lines, Input Impedance Relations, Reflection Coefficient, VSWR,
Smith Chart - Configuration and Applications, lllustrative Problems.
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COURSE OUTCOMES

Upon the successful completion of the course, students will be able to;

1.
2.

Nousw

Study time varying Maxwell equations and their applications in electromagnetic problems
Determine the relationship between time varying electric and magnetic field and
electromotive force

Analyze basic transmission line parameters in phasor domain

Use Maxwell equation to describe the propagation of electromagnetic waves in vaccum
Show how waves propagate in dielectrics and lossy media

Demonstrate the reflection and refraction of waves at boundaries

Explain the basic wave guide operation and parameters

Malla Reddy College of Engineering and Technology www.mrcet.ac.in
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UNIT -1
ELECTROSTATICS
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Introduction:

Electrostatics, as the name implies, is the study of stationary electric charges. Electrostatics is the
study of electric charges at rest. It involves the interaction between charged particles and the
forces and fields they create. Coulomb's law is a fundamental principle in electrostatics that
describes the force between two-point charges.

Vector Algebra is a part of algebra that deals with the theory of vectors and vector spaces.

Most of the physical quantities are either scalar or vector quantities.

Scalar Quantity:

Scalar is a number that defines magnitude. Hence a scalar quantity is defined as a
quantity that has magnitude only. A scalar quantity does not point to any direction i.e. a
scalar quantity has no directional component.

For example, when we say, the temperature of the room is 30° C, we don ‘t specifies the
direction.

Hence examples of scalar quantities are mass, temperature, volume, speed etc.
A scalar quantity is represented simply by a letter — A, B, T, V, S.

Vector Quantity:

A Vector has both a magnitude and a direction. Hence a vector quantity is a
quantity that has both magnitude and direction.

Examples of vector quantities are force, displacement, velocity, etc.

i i A
A,V,B,F

A vector quantity is represented by a letter with an arrow over it or a bold letter.
Unit Vectors:

When a simple vector is divided by its own magnitude, a new vector is created known as
the unit vector. A unit vector has a magnitude of one. Hence the name - unit vector.

A unit vector is always used to describe the direction of respective vector.
pa—
A =

S, = ‘;\ = ‘_Xl “'lA

Al ‘

Hence any vector can be written as the product of its magnitude and its unit vector. Unit Vectors
along the co-ordinate directions are referred to as the base vectors. For example unit vectors
along X, Y and Z directions are ax, ay and az respectively.
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Position Vector / Radius Vector (OP ):

A Position Vector / Radius vector define the position of a point(P) in space relative to
the origin(O). Hence Position vector is another way to denote a point in space.

OP = x@, + ya, + za,
Displacement Vector
Displacement Vector is the displacement or the shortest distance from one point to another.

Vector Multiplication

When two vectors are multiplied the result is either a scalar or a vector depending on how
they are multiplied. The two important types of vector multiplication are:

e Dot Product/Scalar Product (A.B)
e Cross product (A x B)

1. DOT PRODUCT (A. B):

Dot product of two vectors A and B is defined as:
AB=|A||B|cost,p

Where 6,5 is the angle formed between A and B.
Also 0,5 ranges fromOtomie. 0 <Oy <m
The result of A.B is a scalar, hence dot product is also known as Scalar Product.

Properties of Dot Product:

1. If A= (Ax, Ay, Az) and B = (Bx, By, Bz) then
A.B= AxBx + AyBy + AzBz

2. A.B=|A| |B|, if cosf,5=1 which means 0ag = 0°

This shows that A and B are in the same direction or we can also say that A and B are
parallel to each other.

3. A.B =-|A||B|, if cos 8,5=-1 which means 6,5 = 180°.
This shows that A and B are in the opposite direction or we can also say that A and B are
antiparallel to each other.

4. A.B =0, if cos 8,5=0 which means 8,5 = 90°.
This shows that A and B are orthogonal or perpendicular to each other.

5. Since we know the Cartesian base vectors are mutually perpendicular to each other, we have

G0y = y.0, = 8,8, =1 and 8,.a, =a,.8, = a,. 8, =0
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2. Cross Product (A X B):

Cross Product of two vectors A and B is given as:

AXE = |14_| |E| SingABC_lN
Where 6,5is the angle formed between A and B and ay is a unit vector normal to both A and B.
Also O ranges from O tomwi.e. 0 <0y 5<m

The cross product is an operation between two vectors and the output is also a vector.

Properties of Cross Product:
1. If A= (Ax, Ay, Az) and B = (BX, By, Bz) then,

a v a 2

A

3 z
Bv B,

The resultant vector is always normal to both the vector A and B.

2. AXB =0, if sin 8,5 = 0 which means 8,5 = 0° or 180°;
This shows that A and B are either parallel or antiparallel to each other.

3. AXB = | 4| | B | ay, if sin 6,5 = 0 which means 6,5 = 90°.
This shows that A and B are orthogonal or perpendicular to each other.

4. Since we know the Cartesian base vectors are mutually perpendicular to each other, we have
AyX Uy = Ay X Gy = G, Xa, = 0
aXa,=a, ,a,Xa,= a,, a,Xa, =a,
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CO-ORDINATE SYSTEMS:

Co-Ordinate system is a system of representing points in a space of given dimensions by
coordinates, such as the Cartesian coordinate system or the system of celestial longitude and
latitude.

In order to describe the spatial variations of the quantities, appropriate coordinate system is
required. A point or vector can be represented in a curvilinear coordinate system that may be
orthogonal or non-orthogonal. An orthogonal system is one in which the coordinates are mutually
perpendicular to each other.

The different co-ordinate system available are:
e Cartesian or Rectangular co-ordinate system. (Example: Cube, Cuboid)

e Circular Cylindrical co-ordinate system. (Example: Cylinder)

e Spherical co-ordinate system. (Example: Sphere)

The choice depends on the geometry of the application.

A set of 3 scalar values that define position and a set of unit vectors that define direction form
a co-ordinate system. The 3 scalar values used to define position are called co-ordinates. All

coordinates are defined with respect to an arbitrary point called the origin.

1. Cartesian Co-ordinate System / Rectangular Co-ordinate System (x,y,z)

A Vector in Cartesian system is represented as (Ax, Ay, Az) Or
A= Ad,+A,a,+A,a,
Wherea,,a, and a,are the unit vectorsin x, y, z direction respectively
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Range of the variables:

It defines the minimum and the maximum value that X, y and z can have in Cartesian system.
-00 < X,y,Z < 00

Differential Displacement / Differential Length (dl):

Itis given as

dl = dxa, + dya, + dza,

Differential length for a line parallel to x, y and z axis are respectively given as:

dl = dxa,---(For a line parallel to x-axis).
dl = dya, ---(For a line Parallel to y-axis).
dl = dza, ---(For a line parallel to z-axis).

If there is a wire of length L in z-axis, then the differential length is given as dl = dz az.
Similarly, if the wire is in y-axis, then the differential length is given as dl = dy ay.

Differential Normal Surface (ds):

Differential surface is basically a cross product between two parameters of the surface.
The differential surface (area element) is defined as

ds = dsay
Whereay, is the unit vector perpendicular to the surface.

For the 1st figure, z
’ ds = dydzdx

2nd figure, | LJ«: L ]
L_

deza

3rd figure,
ds = dxdya,

Differential Volume:

The differential volume element (dv) can be expressed in terms of the triple product.
dv = dxdydz
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Differential length. area. and volume in
Cartesian coordinates.

2. Circular Cylindrical Co-ordinate System

A Vector in Cylindrical system is represented as (Ar, Ag, A;) or

A =A,a, + Apay + A,a,

Wherea,., ay and a, are the unit vectors in r, ® and z directions respectively.

The physical significance of each parameter of cylindrical coordinates:

1. The value r indicates the distance of the point from the z-axis. It is the radius of the
cylinder.

2. The value @, also called the azimuthal angle, indicates the rotation angle around the z-
axis. It is basically measured from the x axis in the x-y plane. It is measured anti
clockwise.

3. The value z indicates the distance of the point from z-axis. It is the same as in the
Cartesian system. In short, it is the height of the cylinder.

Range of the variables:

It defines the minimum and the maximum values of r, ® and z.
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>

l/ o L "

X

Figure shows Point P and Unit vectors in Cylindrical Co-ordinate System.

Differential Displacement / Differential Length (dl):

Itis given as

l =dra, +rdpa, + dza,
Differential length for a line parallel to r, ® and z axis are respectively given as:

dl = dra,---(For a line parallel to r-direction).
dl = rdea, ---(For a line Parallel to ®-direction).
dl = dza, ---(For a line parallel to z-axis).

Differential Normal Surface (ds):

Differential surface is basically a cross product between two parameters of the surface.
The differential surface (area element) is defined as

ds = dsay
Whereay, is the unit vector perpendicular to the surface.

This surface describes a circular disc. Always remember- To define a circular disk we
need two parameter one distance measure and one angular measure. An angular parameter
will always give a curved line or an arc.

In this case d® is measured in terms of change in arc. Arc is given as:
Arc=radius * angle

ds = rdrdea,

ds = drdza,

ds =rdrdya,

Differential Volume:
The differential volume element (dv) can be expressed in terms of the triple product.
dv = rdrdedz
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3. Spherical coordinate System:

Spherical coordinates consist of one scalar value (r), with units of distance, while the other two
scalar values (6, ®) have angular units (degrees or radians).

A Vector in Spherical System is represented as (Ar ,Ao, Ag) Of
A= A.a, +Aplg + Aya,
Wherea,,ay and a,, are the unit vectors in r, 0 and @ direction respectively.

The physical significance of each parameter of spherical coordinates:

1. The value r expresses the distance of the point from origin (i.e. similar to
altitude). It is the radius of the sphere.
The angle 0 is the angle formed with the z- axis (i.e. similar to latitude). It is also
called the co-latitude angle. It is measured clockwise.

3. Theangle @, also called the azimuthal angle, indicates the rotation angle around the z-
axis (i.e. similar to longitude). It is basically measured from the x axis in the x-y plane.
It is measured counter-clockwise.

Range of the variables:

It defines the minimum and the maximum value that r, 6 and v can have in spherical co-ordinate
system.

0<r<w
0<6<m
0<®O<2n

Differential length:
Itis given as
dl = dra, + rd0ag + rsin6 dea,

Differential length for a line parallel to r, 6 and @ axis are respectively given as:
dl = dra,--(For a line parallel to r axis)
dl = rdfagy---( For a line parallel to 0 direction)

dl = rsin 6 dpa, --(For a line parallel to @ direction)

Differential Normal Surface (ds): Differential surface is basically a cross product between two
parameters of the surface.
The differential surface (area element) is defined as
ds = dsay
Wherea,, is the unit vector perpendicular to the surface.

ds = rdrdfa,
ds = r?sin 0 dedba,
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ds =rsinfdrdpag
Differential Volume:
The differential volume element (dv) can be expressed in terms of the triple product.

dv = r?sin 8 drdepdf

Coordinate transformations:

Coordinate transformations

| Transformation | Coordinate Variables |

Unit Vectors

Vector Components

Cartesian to
cylindrical

an—(y/x)

Ay =Arcosd +Aysing
Ap = —Aysing +Aycosag
A =A;

£

Cylindrical to
Cartesian

Ar=Arcosdh —Agsing
Ay =Arsing +Apcoso
A=A

Cartesian to
spherical

6 =tan~![ /22 +32/7]

# = tan—(y/x)

+¥sin @ sin¢ +zZcos O
Xcos@cosph
+Veos@sing — zsind
= —Xsin¢ + Feosg

Ap = Arsinfcoso
+Aysin@sind + A;coso
Ap = ArcosBcos
+Aycos@sing —A;sin®
Ap = —Aysing +Aycosg

Spherical to
Cartesian

x=Rsinfcosg
v = Rsin 8 sin ¢

= Rcos0

.'=ﬁsm9005¢
+0cos Bcos g —$sm¢
§ =Rsin #sing
+0cos 95i11¢+$cosqﬁ
—Recos0 —0sin®

A =AgsinBcos g
+AgcosOcosdp — Ay sing
Ay = Agsin 8 sin ¢
+Agcos@sing + Ascosg
A =ArcosB —Agsin B

Cylindrical to
spherical

R=vr+7?

8 =tanl(r/z)

=isin® +Zcoso
cos® —ZsinB

Agp=A;smn 6+ A cos0
Ag =ArcosB —A;siné
Ap =4

Spherical to
cylindrical

sinﬂ—kéccs a8

cos@ —Bsind

Ay =Agsin @ +Agcosd

A =4,

A =ArcosB —Agsin g
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Vector relations in the three common coordinate systems.

Cartesian
Coordinates

Cylindrical
Coordinates

Spherical
Coordinates

Coordinate variables

X,Y,2

r¢.z

R.6.¢

Vector representation A =

XA+ FAy +24;

T‘Ar—i-i)A@ +24;

RAg -I—éAg +:$An',

Magnitude of A |Al =

V@+£+@

- —F
Position vector OPR =

X1+ ¥+ 3z,

f (x1,)1,71)

ir + 20,
for P(ry,¢n.21)

Base vectors properties

y=z-1=1
ii[)

P
=¥-
=¥-
X
¥
z

Y
x
x

g M

=it I |

1 =

X x x %

i
I

G gy S s N
I
S pgy N
= e
I

Il
==

(R

Dot product A-B=

A.B.

fo

AB,+AB,

AB,+AyBs +AB,

ApBr+AgBy +A¢B¢

Cross product AxB=

2 ~

X v z
Ar Ay A
B: By B;

R & ¢
Ar As Ap
Br Bs B,

Differential length dl=

Xdr+¥Vdy+2zdz

iy dr+$?'dr,b+ia’:

R AR+ OR d6 + Rsin b do

Differential surface areas

ds, =X dydz
dsy = § dx dz
ds; = Z dx dy

ds, =frd¢ dz
dsy = ¢ drdz
ds; = irdrdg

dsg = RR?sin6 d6 do
dsg =ORsin® dR d¢
dss = @R dRd6

Differential volume 4V =

dxdydz

rdrdgdz

Rlsin8 dRd8 dp

Del operator:

Del is a vector differential operator. The del operator will be used in for differential
operations throughout any course on field theory. The following equation is the del
operator for different coordinate systems.

N =
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Gradient of a Scalar:

- The gradient of a scalar field, V, is a vector that represents both the magnitude and the
direction of the maximum space rate of increase of V.

VIV = C;I/ a, + Of/ a,+ C:r a.=VF, ..

coxX oy (o4 ’

« To help visualize this concept, take for example a topographical map. Lines on the map

represent equal magnitudes of the scalar field. The gradient vector crosses map at the

location where the lines packed into the most dense space and perpendicular (or normal)

to them. The orientation (up or down) of the gradient vector is such that the field is
increased in magnitude along that direction.

-Fundamental properties of the gradient of a scalar field
The magnitude of gradient equals the maximum rate of change in V per unit distance

Gradient points in the direction of the maximum rate of change in V

Gradient at any point is perpendicular to the constant V surface that passes through that
point

The projection of the gradient in the direction of the unit vector a, is

VIV -a
and is called the directional derivative of V along a. This is the rate of change of
V in the direction of a.

If A'is the gradient of V, then V is said to be the scalar potential of A.

Divergence of a Vector:
The divergence of a vector, A, at any given point P is the outward flux per unit
volume as volume shrinks about P.

o W fjldg
divAd=V-A4A=lm ==
Av—0 Av
The divergence of a vector field is a scalar field. The divergence is generally denoted by “div”.
The divergence of a vector field can be calculated by taking the scalar product of
the vector operator applied to the vector field

_ OA,
 Ox dy dz

oA o A, Rectangular
LAS Coordinate System

‘G"-E +

Cylindrical
Coordinate System
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18
rsin 00

1 OA, Spherical Coordinate

Asing)+~ 2T
(Agsing) + rsind d¢ System

Curl of a Vector:
The curl of a vector, A is an axial vector whose magnitude is the maximum circulation

of A per unit area as the area tends to zero and whose direction is the normal direction of
the area when the area is oriented to make the circulation maximum.
-Curl of a vector in each of the three primary coordinate systems are,

Cartesian

Cylindrical

0
. V x 4 - —_
Spherical “smé|ér & o¢

rsméd,
4

{a.qésma) 5.49] 1{@(1-.#,) 1 6‘4,}: 1[6(%) 644..]
Wl | ! + — it

a.—— : = 14
06 o¢ or  smé o¢

or 06

7

¥

7
Divergence Theorem:

« The divergence theorem states that the total outward flux of a vector field, A, through
the closed surface, S, is the same as the volume integral of the divergence of A.

« This theorem is easily shown from the equation for the divergence of a vector field.

A=4a,+ 4,a, + 4,0,

- . b 4.d5
divi=V-A=1lim T—
Av >0 Av

[v-dav=f1d5

Stokes Theorem:
- Stokes theorem states that the circulation of a vector field A, around a closed path, L is

equal to the surface integral of the curl of A over the open surface S bounded by L. This
theorem has been proven to hold as long as A and the curl of A are continuous along the
closed surface S of a closed path L




ELECTROMAGNETIC FIELDS AND TRANSMISSION LINES DEPT.ECE

« This theorem is easily shown from the equation for the curl of a vector field.
A= Aa,+44,+ A4,
. o fA-dl
curlA=VxA=| lim =£—
AS—0 AS

fz;l'df = i(v X ;1) ds

Types of Charge Distributions:

Point charae: When size of a bodv is much smaller than the distance under consideration, then
the size of the body may be ignored and the charged body is called point charge.

The continuous load distribution system is a system in which the charge is uniformly distributed
over the conductor. For a continuous charging device, the infinite number of charges is closely
packed and there is no space between them. Unlike the discrete charging system, the continuous
load distribution in the conductor is uninterrupted and continuous. There are 3 types of
continuous charge distribution system -

e Linear Charge Distribution

e Surface Charge Distribution

e Volume Charge Distribution
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Point charge

Line charge
5)

Surface charge Volume charge
(c) )

Charge distributions. (a) Point charge; (b) Line charge; (c) Surface charge; (d) Volume
charge.

Charge Densities
Volume Charge Density
* When a charge Q 1s distributed evenly throughout a
volume V, the Volume Charge Density is defined as:
p = (Q/V) (Units are C/m?)

Surface Charge Density
= When a charge Q is distributed evenly over a surface
area A, the Surface Charge Density is defined as:
o = (Q/A (Units are C/m?)

Linear Charge Density
* When a charge Q is distributed along a line € | the
Line Charge Density is defined as:
— (Q/C) (Units are C/m)

Coulomb's Law

Coulomb's Law states that the force between two-point charges Qland Q2 is directly

proportional to the product of the charges and inversely proportional to the square of the distance
between them.
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A point charge is a charge that occupies a region of space which is negligibly small compared to
the distance between the point charge and any other object.
Point charge is a hypothetical charge located at a single point in space. It is an idealized model of

a particle having an electric charge. Mathematically, ,

LN,
F=_—12 k=L
RZ 4te,
where K is the proportionality constant.

In Sl units, Q1 and Q2 are expressed in Coulombs(C) and R is in meters.

Force Fisin Newtons (N) and , s called the permittivity of free space.

(We are assuming the charges are in free space. If the charges are any other dielectric medium,

£,

£= 6 * is called the relative permittivity or the dielectric

we will use * instead where
constant of the medium).

Therefore

1 o

—+

As shown in the Figure 1 let the position vectors of the point charges Qland Q2 are given by 1

— —_—

and ? . Let i represent the force on Q1 due to charge Q2.

0
Fig 1: Coulomb's Law

[RPUR— —_— =+

SHTRITIRTA

|. We define the unit vectors as

R
The charges are separated by a distance of

— (,?"2—,?"1) — (,?"1—,?"2)
s = =
12 21
H

and R iz defined
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—_ 00 —~_ Q0 (h-n)

12~ 7 2 —
47, R 4715, R Gﬂﬁ

—_—

Similarly the force on Q1 due to charge Q can be calculated and if o represents this force then

_— —F

we can write £ =~z

When we have a number of point charges, to determine the force on a particular charge due to all

other charges, we apply principle of superposition. If we have N number of charges

Q1,Q2,

, the force experienced by a charge Q located at ;is given by,

5. 0 Tor-n)

A7E, |;_;,:|3

A field is a function that specifies a particular physical quantity everywhere in a region.
Depending upon the nature of the quantity under consideration, the field may be a vector or a
scalar field. Example of scalar field is the electrostatic potential in a region while electric or
magnetic fields at any point is the example of vector field.

Static Electric Fields:

Electrostatics can be defined as the study of electric charges at rest. Electric fields have their
sources in electric charges. The fundamental & experimentally proved laws of electrostatics
are Coulomb’s law & Gauss’s theorem.

Electric Field:

Electric field due to a charge is the space around the unit charge in which it experiences a force.
Electric field intensity or the electric field strength at a point is defined as the force per unit
charge.

Mathematically,
E=F/Q
OR

F=EQ
The force on charge Q is the product of a charge (which is a scalar) and the value of the
electric field (which is a vector) at the point where the charge is located. That is
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The electric field intensity E at a point r (observation point) due a point charge Q located at r
(source point) is given by:
7. 200,

4rE, |r—r'

For a collection of N point charges Q1 ,Qz, Qn located at 1,2 ......""  the electric field

intensity at point 7 'is obtained as

oL S0
dre, 4 |?,

e T |- _;:’3
The expression (6) can be modified suitably to compute the electric filed due to a continuous

distribution of charges.

In figure 2 we consider a continuous volume distribution of charge (t) in the region denoted as

the source region.

For an elementary charge 9= = 214" j o considering this charge as point charge, we can

write the field expression as:

JFe dQr-r") _ e dvir-r)

4, |r—r'r 4re, |r—r'r

Source region

Fig 2: Continuous Volume Distribution of Charge

When this expression is integrated over the source region, we get the electric field at the point P
due to this distribution of charges. Thus the expression for the electric field at P can be written

as:
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B0 - o -7 »
1[4;?1'&',:, r r’z

Similar technique can be adopted when the charge distribution is in the form of a line charge

density or a surface charge density.

7 - lp;(r)(r o
4;?'?‘5,]?" r|3

7 - l[,ajr:r:w(r—r)_;
4;?1E'nr r

Electric Lines of Forces:
Electric line of force is a pictorial representation of the electric field.

Electric line of force (also called Electric Flux lines or Streamlines) is an imaginary straight or
curved path along which a unit positive charge tends to move in an electric field.

Properties Of Electric Lines of Force:

1. Lines of force start from positive charge and terminate either at negative charge or move to
infinity.

2. Similarly, lines of force due to a negative charge are assumed to start at infinity and
terminate at the negative charge.
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+Q
e

The number of lines per unit area, through a plane at right angles to the lines, is
proportional to the magnitude of E. This means that, where the lines of force are close
together, E is large and where they are far apart E is small.

If there is no charge in a volume, then each field line which enters it must also leave it.
If there is a positive charge in a volume then more field lines leave it than enter it.

If there is a negative charge in a volume then more field lines enter it than leave it.
Hence, we say Positive charges are sources and Negative charges are sinks of the field.
These lines are independent on medium.

Lines of force never intersect i.e. they do not cross each other.

. Tangent to a line of force at any point gives the direction of the electric field E at that
point.

Electric flux density:

As stated earlier electric field intensity or simply ‘Electric field' gives the strength of the field at
a particular point. The electric field depends on the material media in which the field is being
considered. The flux density vector is defined to be independent of the material media (as we'll
see that it relates to the charge that is producing it). For a linear isotropic medium under

consideration; the flux density vector is defined as:

Electric flux density is defined as the amount of flux passes through unit surface area in the
space imagined at right angle to the . The expression of ata
point is given by

g @

drey e, 2

Where, Q is the charge of the body by which the field is created. R is the distance of the point

from the center of the charged body.
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We define the electric flux as

Solved problems:

Problem1:

Find the charge in the volume defined by 0 Sx < Im0<y<Imand0<zs 1 mif
p = 30y (uC/m*). What change occurs for the limits -1 € y < 0 m?

Since dQ = p dv,

Q= J: L: L: 30x2y dxdydz =5 uC

For the change in limits on y,
1p0 o1
0= ['[° ['30stydedyem -5

Problem-2

Three point charges, @, = 30 nC, Q, = 150 nC, and Q5 = -70 nC, are enclosed by surface
§. What net flux crosses §?

Since electric flux was defined as originating on positive charge and terminating on
negative charge, part of the flux from the positive charges terminates on the negative
charge.

¥Yoor= Quee =30+ 150 -70 = 110 nC

Problem-3

A point charge, Q = 30 nC, is located at the origin in cartesian coordinates. Find the
electric flux density D at (1, 3, —-4) m.

Referring to Fig. 3.12,
Q

D= a
anR® "

30x10™ (a,+3a, —4a,
T 4m(26) J26
a ,+3a, —4a,

=~ | C/m?
J26 )

or, more conveniently, D = 91.8 pC/m?.

(9.18 x 10-“)[

Fig. 3.12

Problem-4
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Given that D = 10xa, (C/m?), determine the flux crossing a 1-m?” area that is normal to the
yaxis at x = 3 m.

Since D is constant over the area and perpendicular to it,
¥ = DA = (30 C/m*)(1 m*) =30 C

Problem-5

Given the vector field A = sz(sin%i) a, find div Aat x = 1.
divA= 9 (szsinvp) = 5x2(cos BX )” +10x sin ™% = 3 ;12 cos *X 4 10x sin X
d 2 2 )2 2 2 2 2
and div A|,., = 10.

Problem-6

Given that D = (10-°/4)a, (C/m?) in the region 0 < r < 3 m in cylindrical coordinates and
D = (810/4r)a, (C/m’) elsewhere, find the charge density.

For 0<r<3m,

- li("’”) = 10 (C/m’)

ror\ 4

and for r>3m,

19 810/4)=0
ror

Problem-8

A charge 21 =-20uC is located at P (- 6, 4, 6) and a charge Qz =50pC is
located at R (5, 8, — 2) in a free space. Find the force exerted on Qz by 4 in
vector form. The distances given are in metres.

From the co-ordinates of P and R , the respective position vectors are —
P = —68, +43y +63,
and R = 5a,. +8ay —2a,
The force on Q3 is given by,

o= Qs
i 4neoRY

Rer =R-P=[5-(-6)] a. +(8-4) ay +[-2-(6)a.]
=113, +4Er —-8a,
= JAD? +(4)2 +(—-8)2 =14.1774

12
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Gauss's Law:

Gauss's law is one of the fundamental laws of electromagnetism and it states that the total

electric flux through a closed surface is equal to the total charge enclosed by the surface.

Let us consider a point charge Q located in an isotropic homogeneous medium of dielectric

constant. The flux density at a distance r on a surface enclosing the charge is given by

— o .

== 4
A

If we consider an elementary area ds, the amount of flux passing through the elementary area is

given by

cfsu::r;:usé' — 40

r , 1s the elementary solid angle subtended by the area & at the location of Q.

dir = E gLl
Therefore, we can write 4

v gav- %?cm -0

For a closed surface enclosing the charge, we can write

which can seen to be same as what we have stated in the definition of Gauss's Law.
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Hence we have,

Qenc = f’cD Lds = J’I}v dv
s v

Applving Divergence theorem we have,

?ED.{IS = J’?\D dv
<

s

Comparing the above two equations, we have

f?hD dv = J’I)v dv
¥ ¥

This equation is called the 1st Maxwell's equation of electrostatics.
Application of Gauss's Law:

Gauss's law is particularly useful in computing £ or L'where the charge distribution has some

symmetry. We shall illustrate the application of Gauss's Law with some examples.

1. £ dueto an infinite line charge

As the first example of illustration of use of Gauss's law, let consider the problem of
determination of the electric field produced by an infinite line charge of density (C/m. Let us
consider a line charge positioned along the z-axis as shown in Fig. 4(a) (next slide). Since the
line charge is assumed to be infinitely long, the electric field will be of the form as shown in Fig.
4(b) (next slide).

If we consider a close cylindrical surface as shown in Fig. 2.4(a), using Gauss's theorm we can
write,
od=0 =cfe;u§..:f§= J‘EDE.dE+J:ED§.dE+J‘EDEdE

5
Considering the fact that the unit normal vector to areas S; and Sz are perpendicular to the
electric field, the surface integrals for the top and bottom surfaces evaluates to zero. Hence we

can write, € = G2
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2. Infinite Sheet of Charge
As a second example of application of Gauss's theorem, we consider an infinite charged sheet

covering the x-z plane as shown in figure 5. Assuming a surface charge density of s for the

infinite surface charge, if we consider a cylindrical volume having sides £f placed symmetrically
as shown in figure 5, we can write:

fﬂ-ds =2Dhs = p_fs

~ P
E=_f4

ED by
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x

Fig 5: Infinite Sheet of Charge

It may be noted that the electric field strength is independent of distance. This is true for the
infinite plane of charge; electric lines of force on either side of the charge will be perpendicular
to the sheet and extend to infinity as parallel lines. As number of lines of force per unit area gives
the strength of the field, the field becomes independent of distance. For a finite charge sheet, the

field will be a function of distance.

3. Uniformly Charged Sphere

Let us consider a sphere of radius rO having a uniform volume charge density of rv C/m3. To

—

determine £ everywhere, inside and outside the sphere, we construct Gaussian surfaces of
radius r <r0 and r > r0 as shown in Fig. 6 (a) and Fig. 6(b).

rin

For the region ; the total enclosed charge will be

3

4
= o, =7
Qﬂé I'G'Il' 3

[

(a) (b)

Fig 6: Uniformly Charged Sphere
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By applying Gauss's theorem,

. . 21’ X
EF'D-ds - I I Do sin 8d8d g = 4D, = 0
[ gl =l

Therefore

E=%pﬁr 0<r<n

For the region © 70 the total enclosed charge will be

4
Qﬂé = -'Gv E‘-':IT""'I'ZI3

By applying Gauss's theorem,

3
B .
__Eaavar Fih

Electric Potential / Electrostatic Potential (V):

If a charge is placed in the vicinity of another charge (or in the field of another charge), it
experiences a force. If a field being acted on by a force is moved from one point to another, then
work is either said to be done on the system or by the system.

Say a point charge Q is moved from point A to point B in an electric field E, then the
work done in moving the point charge is given as:

WA—B=-JAB (F.dl)=-QJAB(E. dl)

where the — ve sign indicates that the work is done on the system by an external agent.
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The work done per unit charge in moving a test charge from point A to point B is the
electrostatic potential difference between the two points(VAB).

VAB =WA—B/Q
-[AB(E . dI)

- [InitialFinal (E . dl)

If the potential difference is positive, there is a gain in potential energy in the movement,
external agent performs the work against the field. If the sign of the potential difference is
negative, work is done by the field.

The electrostatic field is conservative i.e. the value of the line integral depends only on
end points and is independent of the path taken.

B

A

- Since the electrostatic field is conservative, the electric potential can also be written as:

B —
VABz_fEdl
A
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Thus, the potential difference between two points in an electrostatic field is a scalar field that
is defined at every point in space and is independent of the path taken.

- The work done in moving a point charge from point A to point B can be written as:

WA—-B=-Q[Ve-Val= —Q[ E.dl
- Consider a point charge Q at origin O.

Now if a unit test charge is moved from point A to Point B, then the potential difference between
them is given as:

I'y g

- dra,
g ATE r?
A

- Electrostatic potential or Scalar Electric potential (V) at any point P is given by:

P__
V=—f E.dl
P

0

The reference point Po is where the potential is zero (analogues to ground in a circuit).
The reference is often taken to be at infinity so that the potential of a point in space is defined as

P J—
v=—f5¢z

[+ 4]
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Basically, potential is considered to be zero at infinity. Thus potential at any point ( rB =r) due
to a point charge Q can be written as the amount of work done in bringing a unit positive
charge from infinity to that point (i.e. rA — )

Electric potential (V) at point r due to a point charge Q located at a point with position vector
rl is given as:

P o
ATE|T- 1]

Similarly for N point charges Q1, Q2 ....Qn located at points with position vectors rl,
r2, r3.....rn, theelectric potential (V) at point r is given as:

N
. 1 Q.

4TE

k=1 Il‘ - l‘kl

The charge element dQ and the total charge due to different charge distribution is given as:

Q

dQ=pldl — Q=]JL (pldl) - (Line Charge) V = ——
4TEY

dQ = psds — Q=S (psds) — (Surface Charge)

dQ=pvdv —Q-= v (pvdv) — (Volume Charge)

3 l)I. dl P ‘
\po=ut . : : (Line Charge)
J ame|r-n|

| A
V= I Py ds (Swrface Charge)
JAme |r-n |

S

Ve I Py dv (Volume Charge)
JAame|r-r |
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Second Maxwell’s Equation of Electrostatics:

The work done per unit charge in moving a test charge from point A to point B is the
electrostatic potential difference between the two points(V ag).

Vag= V- Va

Similarly,

Vea=Va—-Vs

Hence it‘s clear that potential difference is independent of the path taken. Therefore

VaB = - Vea
Vagt Vea =0

JAB(E.dl)+[-]BA(E.dl)]=0

jEE.(ll=O
L

The above equation is called the second Maxwell‘s Equation of Electrostatics in integral form..
The above equation shows that the line integral of Electric field intensity (E) along a closed path

is equal to zero.

In simple words—No work is done in moving a charge along a closed path in an electrostatic
field.

Applying Stokes‘Theorem to the above Equation, we have:

j(E .dl = f(?xE)ods =
L S

—>7xE=0

If the Curl of any vector field is equal to zero, then such a vector field is called an Irrotational or

Conservative Field. Hence an electrostatic field is also called a conservative field.

;I'he above equation is called the second Maxwell ‘s Equation of Electrostatics in differential
orm.




ELECTROMAGNETIC FIELDS AND TRANSMISSION LINES DEPT.ECE

Relationship Between Electric Field Intensity (E) and Electric Potential (V):

Since Electric potential is a scalar quantity, hence dV (as a function of x, y and z variables) can
be written as:

av
dz

dz

oy @ Vens
dxd\+ 5:‘—_11_\ 3

oV

3, e -|(lx:1x tdya, 4+ dza, | =-E . dl

7V.dl=-E.dl —> ([E=-7V)

Hence the Electric field intensity (E) is the negative gradient of Electric potential (V).
The negative sign shows that E is directed from higher to lower values of V i.e. E is opposite to
the direction in which V increases.

Properties of Materials and Steady Electric Current:

Electric field can not only exist in free space and vacuum but also in any material medium. When
an electric field is applied to the material, the material will modify the electric field either by
strengthening it or weakening it, depending on what kind of material it is.

Materials are classified into 3 groups based on conductivity / electrical property:

e Conductors (Metals like Copper, Aluminum, etc.) have high conductivity (¢ >> 1).
e Insulators / Dielectric (Vacuum, Glass, Rubber, etc.) have low conductivity (¢ << 1).
e Semiconductors (Silicon, Germanium, etc.) have intermediate conductivity.

Conductivity (o) is a measure of the ability of the material to conduct electricity. It is
the reciprocal of resistivity (p). Units of conductivity are Siemens/meter and mho.

The basic difference between a conductor and an insulator lies in the amount of free electrons
available for conduction of current. Conductors have a large amount of free electrons whereas
insulators have only a few number of electrons for conduction of current. Most of the conductors
obey ohm'‘s law. Such conductors are also called ohmic conductors.

Due to the movement of free charges, several types of electric current can be caused.
The different types of electric current are:

e Conduction Current.

e Convection Current.
e Displacement Current.
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Electric current:

Electric current (1) defines the rate at which the net charge passes through a wire of
cross-sectional surface area S.

Mathematically,

If a net charge AQ moves across surface S in some small amount of time At, electric current(I)
is defined as:

; A d
= lim _Q s _Q
How fast or how speed the charges will move depends on the nature of the material medium.

Current density:

Current density (J) is defined as current Al flowing through surface AS.

Imagine surface area AS inside a conductor at right angles to the flow of current. As the
area approaches zero, the current density at a point is defined as:

yas |
As—0 LS

The above equation is applicable only when current density (J) is normal to the surface.

In case if current density(J) is not perpendicular to the surface, consider a small area ds of
the conductor at an angle 0 to the flow of current as shown:

=\
— ds

*~—>

In this case current flowing through the area is given as:

di=JdScos0=J.dS and I1=/[].ds
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Where angle 0 is the angle between the normal to the area and direction of the current.
From the above equation it‘s clear that electric current is a scalar quantity.

CONTINUITY EQUATION:

The continuity equation is derived from two of Maxwell's equations. It states that the
divergence of the current density is equal to the negative rate of change of the charge density,

8p
Ot

Derivation

One of Maxwell's equations, Ampere's law, states that

oD

Taking the divergence of both sides results in
oV -D
8t )

but the divergence of a curl is zero, so that

ViNxH=ViJit

oV -D

ot
Another one of Maxwell's equations, Gauss's law, states that
V-D=p.

Substitute this into equation (1) to obtain

V- -J+ 0. (1)

B _
ot

which is the continuity equation.

V-J+ 0,

Relaxation Time

Relaxation time can be defined as the time taken by electron to attain an average velocity which
is 1/e times its value.

The different physics interfaces involving only the scalar electric potential can be interpreted in
terms of the charge relaxation process. The fundamental equations involved are Ohm’s law for
the conduction current density

J. = oE

the equation of continuity

ep
=+V-J =0
it I"'

and Gauss’ law
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V-(eE) = p
By combining these, one can deduce the following differential equation for the space charge
density in a homogeneous medium

This equation has the solution

1T
plt) = pge

were

is called the charge relaxation time.

LAPLACE'S AND POISSON'S EQUATIONS:

A useful approach to the calculation of electric potentials is to relate that potential to the
charge density which gives rise to it. The electric field is related to the charge density by the
divergence relationship

F = electric field
P = charge density

€y = permittivity
and the electric field is related to the electric potential by a gradient relationship
E=-VV

Therefore the potential is related to the charge density by Poisson's equation

V.Vv=V¥="_
l-_‘“

In a charge-free region of space, this becomes LaPlace's equation

VV=0

This mathematical operation, the divergence of the gradient of a function, is called the Laplacian.
Expressing the Laplacian in different coordinate systems to take advantage of the symmetry of a
charge distribution helps in the solution for the electric potential V. For example, if the charge
distribution has spherical symmetry, you use the Laplacian in spherical polar coordinates.

Since the potential is a scalar function, this approach has advantages over trying to calculate the
electric field directly. Once the potential has been calculated, the electric field can be computed
by taking the gradient of the potential.
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Solved problems:
Problem1:

Three point charges, @, = 30 nC, @, = 150 nC, and Q, = -70 nC, are enclosed by surface
§. What net flux crosses S?

Since electric flux was defined as originating on positive charge and terminating on
negative charge, part of the flux from the positive charges terminates on the negative
charge.

¥Yoor= Quee =30+ 150 =70 = 110 nC

Problem-2

What electric field intensity and current density correspond to a drift velocity of
6.0 x 10~ m/s in a silver conductor?

For silver o = 61.7 MS/m and pu=5.6 %102 m¥/V-s.

Ee Y a2 07 %10V

H  56x1073
J= cE = 6.61 x 10° A/m?

Problem-3

Find the current in the circular wire shown in Fig. 6.6 if the current
density is 3 = 15(1 - ¢71%%%)a, (A/m?). The radius of the wire is 2 mm.

A cross section of the wire is chosen for S. Then

dl=J - dS
= 15(1 - e71%a, . r dr doa,

2 0.002
and I= J‘ i _[ 15(1 — e=190) 1 dr d g
0 0

=1.33 X107 A = 0.133 mA

)
3
Any surface S which has a perimeter that meets the outer surface of T
the conductor all the way around will have the same total current,

Fig. 6.6

Problem-4

Determine the relaxation time for silver, given that o = 6.17 x 107 S/m. If charge of
density p, is placed within a silver block, find p after one, and also after five, time
constants,

Since € = g,
10936x

e =143%x10Y5
o 6.17 x107

Therefore
at t= 1: p=poe! = 0.368p,

at t=57: p=pee” =674 x 107p,
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UNIT-II
MAGNETOSTATICS
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Introduction:

The source of steady magnetic field may be a permanent magnet, a direct current or an electric
field changing with time. In this chapter we shall mainly consider the magnetic field produced by
a direct current. The magnetic field produced due to time varying electric field will be discussed
later.

There are two major laws governing the magneto static fields are:

e Biot-Savart Law

e Ampere's Law

Usually, the magnetic field intensity is represented by the vector & . It is customary to represent the
direction of the magnetic field intensity (or current) by a small circle with a dot or cross sign
depending on whether the field (or current) is out of or into the page as shown in Fig. 2.1.

H (or I') out of the page E(or ') into the page

Fig. Representation of magnetic field (or current)

Biot- Savart’s Law:

This law relates the magnetic field intensity dH produced at a point due to a differential

current element 447 as shown in Fig.
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The magnetic field intensity €47 at P can be written as,

A !d!xik " fdﬁXf
4nR 4R

_ IdiSina:

dH .
4R

where A |R| is the distance of the current element from the point P.

The value of the constant of proportionality 'K' depends upon a property called permeability of
the medium around the conductor. Permeability is represented by symbol 'm' and the constant 'K’
is expressed in terms of 'm' as

Thus

2 Idl sin®
4n r2

Magnetic field 'B' is a vector and unless we give the direction of 'dB', its description is not
complete. Its direction is found to be perpendicular to the plane of 'r' and 'dl".

If we assign the direction of the current 'I' to the length element 'dl', the vector product dl x r has
magnitude r dl sing and direction perpendicular to 'r'and ‘dl'.

Hence, Biot—Savart law can be stated in vector form to give both the magnitude as well as
direction of magnetic field due to a current element as

o I(diXr
i 2 ( r)
4N r3
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Similar to different charge distributions, we can have different current distribution such as
line current, surface current and volume current. These different types of current densities are
shown in Fig. 2.3.

Line Current Surface Current Volume Current

Fig. 2.3: Different types of current distributions

By denoting the surface current density as K (in amp/m) and volume current density as J
(inamp/m2) we can write:

Jdi = Kds = Jadv

(1t may be noted that { = £dw = Jda)

Employing Biot -Savart Law, we can now express the magnetic field intensity H. In terms of
these current distributions as

T - 1d£><3R
4R

;1; 6 K(Z’EXB§
4R

—  JdvxR
Hi=
J 4R
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H Due to infinitely long straight conductor:

We consider a finite length of a conductor carrying a current i placed along z-axis as shown in
the Fig 2.4. We determine the magnetic field at point P due to this current carrying conductor.

)

Fig. 2.4: Field at a point P due to a finite length current carrying conductor

With reference to Fig. 2.4, we find that

cf?=ciz;x and R = ,c}czl—za:,
Applying Biot - Savart's law for the current element ¢ €¢ We can write,

_HIxR _ pdd,
Aar-D3 471[’02 +22]3.‘2
=tan &
Substituting we can write,
— "] prsec’ ada I, .
H=[— a. = sin &, —sin & )&
q4:r‘r Osec’ @ Y 4?;29( % &1) <

—_an? — _an?
We find that, for an infinitely long conductor carrying a current | , & =20 and <1 20
Therefore
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Ampere's Circuital Law:

Ampere's circuital law states that the line integral of the magnetic field ﬁ(circulation ofH)
around a closed path is the net current enclosed by this path. Mathematically,

(PH.df e
The total current | enc can be written as,
L, = l?.dé

By applying Stoke's theorem, we can write

(Pﬁ.df = lv xHds

lwﬁdé’ =J‘7.d§

—_—

LVxXH =7

Which is the Ampere's circuital law in the point form and Maxwell’s equation for magneto static
fields.
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Applications of Ampere's circuital law:

1. ltisusedto find H and B due to any type of current distribution.
2. If Hor Bisknown then itis also used to find current enclosed by any closed path.

We illustrate the application of Ampere's Law with some examples.

H Due to infinitely long straight conductor :( using Ampere’s circuital law)

We compute magnetic field due to an infinitely long thin current carrying conductor as
shown in Fig. 2.5. Using Ampere's Law, we consider the close path to be a circle of
radius # as shown in the Fig. 4.5.

If we consider a small current element “4/(= #2d:) " @ H is perpendicular to the plane

containing both 4! and R(=p4,) Therefore only component of Ethat will be present is

sie, 77 H"“‘".

By applying Ampere's law we can write,
2z

, JHW¢=H¢,@2N =7

A=t 4
2

Fig. Magnetic field due to an infinite thin current carrying conductor
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H Due to infinitely long coaxial conductor :( using Ampere's circuital law)

We consider the cross section of an infinitely long coaxial conductor, the inner conductor
carrying a current | and outer conductor carrying current - I as shown in figure 2.6. We
compute the magnetic field as a function of # as follows:

In the region 0ok

2

T (o
Rl

_ e ip

o % 2ma’

In the region £ £ 2 < &

Fig. 2.6: Coaxial conductor carrying equal and opposite currents in the region

R $p<R,

o 4 KSp

In the region PR
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Magnetic Flux Density:

In simple matter, the magnetic flux density & related to the magnetic field intensity & as

=48 \yhere # called the permeability. In particular when we consider the free space

—_—

_ - -7
=t H where % 410 H/m is the permeability of the free space. Magnetic flux density is

measured in terms of Wb/m 2 .

The magnetic flux density through a surface is given by:

= lgd;

Wb

In the case of electrostatic field, we have seen that if the surface is a closed surface, the net flux
passing through the surface is equal to the charge enclosed by the surface. In case of magnetic
field isolated magnetic charge (i. e. pole) does not exist. Magnetic poles always occur in pair (as
N-S). For example, if we desire to have an isolated magnetic pole by dividing the magnetic bar
successively into two, we end up with pieces each having north (N) and south (S) pole as shown
in Fig. 6 (a). This process could be continued until the magnets are of atomic dimensions; still

we will have N-S pair occurring together. This means that the magnetic poles cannot be isolated.

—_— —
H or B lines

5

(a) {b)

Fig. 6: () Subdivision of a magnet (b) Magnetic field/ flux lines of a straight current carrying
conductor

Maxwell’s 2" equation for static magnetic fields:

Similarly if we consider the field/flux lines of a current carrying conductor as shown in Fig. 6

(b), we find that these lines are closed lines, that is, if we consider a closed surface, the number

of flux lines that would leave the surface would be same as the number of flux lines that would

enter the surface.

From our discussions above, it is evident that for magnetic field,
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in integral form
which is the Gauss's law for the magnetic field.

By applying divergence theorem, we can write:

fﬁﬁE=JEﬁh=D

Hence, V.B=0 in point/differential form

which is the Gauss's law for the magnetic field in point form.

Magnetic Scalar and Vector Potentials:
In studying electric field problems, we introduced the concept of electric potential that simplified
the computation of electric fields for certain types of problems. In the same manner let us relate

the magnetic field intensity to a scalar magnetic potential and write:

—

=—v};

From Ampere's law , we know that

—

TxH =0

Therefore, VX[~V ) =

—_—

V) =0 e find that 7 = P is valid only where ¥ =0

But using vector identity, 7

—

Thus the scalar magnetic potential is defined only in the region where < =0 . Moreover, Vm in
general is not a single valued function of position. This point can be illustrated as follows. Let us

consider the cross section of a coaxial line as shown in fig 7.

In the region 252 * 7 =0 anq
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Fig. 7: Cross Section of a Coaxial Line

If Vm is the magnetic potential then,

AL

o dg
I

2Fm

If we set Vm =0 at g=0 then ¢=0 and

SAL g=g P =—i¢%
27

We observe that as we make a complete lap around the current carrying conductor , we reach %

again but Vm this time becomes

- Lg
™ EJ‘T[% )

We observe that value of Vm keeps changing as we complete additional laps to pass through the
same point. We introduced Vm analogous to electostatic potential V.

But for static electric fields,
TxE=0 gng PE 470

L = = Hedi=1 L
whereas for steady magnetic field ¥>*& =0 wherever ¥ =0 but (P even if /=0

along the path of integration.
We now introduce the vector magnetic potential which can be used in regions where
current density may be zero or nonzero and the same can be easily extended to time varying

cases. The use of vector magnetic potential provides elegant ways of solving EM field problems.

= ~ V. [Vxd]=0
Since -5 = Uand we have the vector identity that for any vector 4, ( ) , we
can write & =% *4 |

Here, the vector field - is called the vector magnetic potential. Its SI unit is Wb/m.

Thus if can find A of a given current distribution, £ can be found from 4 through a curl

—_

operation. We have introduced the vector function £ and 4 related its curl to £. A vector

function is defined fully in terms of its curl as well as divergence. The choice of ¥-4 is made as

follows.

VXV d=FxH =]
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— _ — _ 2_._
By using vector identity, ¥ <V *A=V(V.4) -V 4

T A -Td= 4T
Great deal of simplification can be achieved if we choose VA= Q,
25 =

Putting ¥-4=0  we ge ~HJ \yhich is vector poisson equation.

In Cartesian coordinates, the above equation can be written in terms of the components as
VA, = -,
VA4, - -ud,
VR4, =—pl,
The form of all the above equation is same as that of

v =-£
£

for which the solution is
=L Py F-7
dme R

VA= ,.:J.f,E'E
dt

In case of time varying fields we shall see that , which is known as Lorentz condition, V being

the electric potential. Here we are dealing with static magnetic field, so-4=10.

By comparison, we can write the solution for Ax as

Hoady o
Nl ek
ST

Computing similar solutions for other two components of the vector potential, the vector

potential can be written as

A= ia!’v'
drd R
This equation enables us to find the vector potential at a given point because of a volume current

density .

Similarly for line or surface current density we can write

A=l
dmxd B
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J—

A=A Eds'
drrd R

The magnetic flux % through a given area S is given by
w=!§d§ _ _
Substituting & =% * 4
W= lvxﬁ.dE =r£ﬁ.df
Vector potential thus have the physical significance that its integral around any closed path is

equal to the magnetic flux passing through that path.
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Forces due to magnetic fields

There are at least three ways in which force due to magnetic fields can be
experienced. The force can be (a) due to a moving charged particle in a (B) field,

(b) on a current element in an external (B) field, or (c) between two currentelements.
Force on a Charged Particle

The electric force (Fe) on a moving electric charge (Q) in an electric field is given by
Coulomb’s experimental law and is related to the electric field intensity (E) as
Fe =QE
This shows that if Q is positive, Feand E have the same direction.
A magnetic field can exert force only on a moving charge. From experiments, itis found that
the magnetic force (Fm) experienced by a charge (Q) moving with avelocity (u) in a magnetic
field (B) is

This clearly shows that (Fm)is perpendicular to both (u) and (B).

From egs. (1) and (2), a comparison between the electric force Fe and the magnetic force Fm
can be made. Fe is independent of the velocity of the charge and can perform work on the
charge and change its kinetic energy. Unlike Fe, Fm depends on the charge velocity and is
normal to it. Fm cannot perform work because its at right angles to the direction of motion of
the charge (Fm. dl = 0); it does not cause an increase in kinetic energy of the charge. The
magnitudeof Fmis generally small compared to Fe except at high velocities.

For a moving charge Q in the presence of both electric and magnetic fields,the total force on

the charge is given by

F=F,+ F,,

F= Q(E+u xB)

This is known as the (Lorentz force equation). It relates mechanical force to electrical force. If
the mass of the charged particle moving in E and B fields is m
, by Newton’s second law of motion.

du

F=m_— = Q(E+u xB)
dt
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Force on a Current Element

To determine the force on a current element (I dl) of a current — carryingconductor due to
the magnetic field (B), we modify eq. (2) using the fact that for convection current

J= py u
To recall the relationship between current elements:

ldl=Kds=Jdv
Combining egs. (5—-5)and (5-6) yields
ldl= pyudv =dQu

Alternatively . Idl= 29 dl= dQ £ =dQu
= = dt

rdai= dgQ u

This shows that an elemental charge (d Q) moving with velocity u (therebyproducing
convection current element d Q u) is equivalent to a conduction current element I dl . Thus,
the force on current element I dl in a magnetic field Bis found from eq. (2) by merely
replacing Q u by I dl; that is,

dF=1dlx B

If the current 1 is through a closed path L or circuit, the force on thecircuit is given by

F=¢IdlxB
L

Also have surface current elements (K d S) or a volume current element(J dv)

F=[, KdSxB , F=[, Jdv xB

Force between Two Current Elements

The force between two elements 11 dl1 and 12 dl 2 . According to Biot — Savart’s law ,
both current element produce magnetic fields. So may find the forced (d F1) on element | 1
dl 1 due to the field d B > produced by element 12 dl > as shown in figure (5—1) . From eq. (
5-8),
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d(dFl) = 11 dlldez

But from Biot — Savart’s law,

Molz dl2 x AR91
4hR3,

deZ

wnedtoll d 11 x(I2d 12 x ary4)
) =
d(dF; 4hRY,

Fig. Force between Two Current Elements

This equation is essentially the law of force between two current element and is analogous to
Coulomb’s law, which expresses the force between two stationary charges. From eq. (5 — 12
) , can to obtain the total force F1 on current loop ( 1 ) due to current loop ( 2 ) shown in
figure(5-1)as

_ polilp dlp. x(dlz x ag,,)

Fl - 4m d:.j_ L2 Rlz’l

The force F2 on loop ( 2 ) due to the magnetic field B1 from loop (1) is obtained from above eq.
by interchanging subscripts 1 and 2 . It can be shown that F2 = - Fi;




ELECTROMAGNETIC FIELDS AND TRANSMISSION LINES DEPT.ECE

Maxwell's Equations (Time Varying Fields)
Faraday's Law:

Michael Faraday, in 1831 discovered experimentally that a current was induced in a conducting
loop when the magnetic flux linking the loop changed. In terms of fields, we can say that a time
varying magnetic field produces an electromotive force (emf) which causes a current in a closed
circuit. The quantitative relation between the induced emf (the voltage that arises from
conductors moving in a magnetic field or from changing magnetic fields) and the rate of change
of flux linkage developed based on experimental observation is known as Faraday's law.

Any change in the magnetic environment of a coil of wire will cause a voltage (emf) to be
"induced" in the coil. No matter how the change is produced, the voltage will be generated.
The change could be produced by changing the magnetic field strength, moving a magnet
toward or away from the coil, moving the coil into or out of the magnetic field, rotating the coil
relative to the magnet, etc.

Faraday's law is a fundamental relationship which comes from Maxwell's equations. It serves as
a succinct summary of the ways a voltage (or emf) may be generated by a changing magnetic
environment. The induced emf in a coil is equal to the negative of the rate of change of
magnetic flux times the number of turns in the coil. It involves the interaction of charge with
magnetic field.

When two current carrying conductors are placed next to each other, we notice that each induces
a force on the other. Each conductor produces a magnetic field around itself (Biot— Savart law)
and the second experiences a force that is given by the Lorentz force.

VFORCE BETWEEN LONG PARALLEL CONDUCTORS

— [
Current in same direction

(I

Mathematically, the induced emf can be written as
_4¢
Emf= dt Volts
dg
where ? is the flux linkage over the closed path. A non zero dr may result due to any of the

following:
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(a) time changing flux linkage a stationary closed path.

(b) relative motion between a steady flux a closed path.

(c) a combination of the above two cases.
The negative sign in equation (7) was introduced by Lenz in order to comply with the polarity of
the induced emf. The negative sign implies that the induced emf will cause a current flow in the
closed loop in such a direction so as to oppose the change in the linking magnetic flux which
produces it. (It may be noted that as far as the induced emf is concerned, the closed path forming
a loop does not necessarily have to be conductive).
If the closed path is in the form of N tightly wound turns of a coil, the change in the magnetic
flux linking the coil induces an emf in each turn of the coil and total emf is the sum of the
induced emfs of the individual turns, i.e.,

_y 39

Emf = dt Volts

By defining the total flux linkage as
A=Ng

The emf can be written as

_di
Emf = di
Continuing with equation (3), over a closed contour 'C' we can write
Emf = EFGE..:ﬂ
where Z is the induced electric field on the conductor to sustain the current.

Further, total flux enclosed by the contour 'C ' is given by
¢=l§d5

Where S is the surface for which 'C' is the contour.

From (11) and using (12) in (3) we can write

§.Fdl=-2q Fas

By applying stokes theorem

LTXEdLLL%EdE

Therefore, we can write
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a8

TxE=-"2
o

which is the Faraday's law in the point form

¢

We have said that non zero % can be produced in a several ways. One particular case is when a

time varying flux linking a stationary closed path induces an emf. The emf induced in a

stationary closed path by a time varying magnetic field is called a transformer emf .

Displacement Current Density:
The equation
Aw H = F For static EM fields 15 modified to Modified to
AxH = +J, (3.19)
To make the Ampere’s law compatible for varying fields.
Now, applying divergence, we get

A(AxH)=0=AJ + AJ,
de.

A, ==A0=
o

From Gauss Law, we have
e =AMl

Therefore,

AT

w1

(3.20)




ELECTROMAGNETIC FIELDS AND TRANSMISSION LINES DEPT.ECE

MAXWELL’S EQUATIONS (Time varying Fields)

Introduction:

In our study of static fields so far, we have observed that static electric fields are produced by
electric charges, static magnetic fields are produced by charges in motion or by steady current.
Further, static electric field is a conservative field and has no curl, the static magnetic field is
continuous and its divergence is zero. The fundamental relationships for static electric fields

among the field quantities can be summarized as:

VxE=0 (1)

VD=4

For a linear and isotropic medium,
B-:8 (3
Similarly for the magnetostatic case
VE=0 (4)
VxH =7 (5)
VxH=J (6)
It can be seen that for static case, the electric field vectors EFand E?'Fand magnetic field vectors

Band f form separate pairs.

Maxwell's equations represent one of the most elegant and concise ways to state the
fundamentals of electricity and magnetism. From them one can develop most of the working
relationships in the field. Because of their concise statement, they embody a high level of
mathematical sophistication and are therefore not generally introduced in an introductory
treatment of the subject, except perhaps as summary relationships.

These basic equations of electricity and magnetism can be used as a starting point for advanced
courses, but are usually first encountered as unifying equations after the study of electrical and
magnetic phenomena.
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Symbols Used

E = Electric field p = charge density | = electric current
B = Magnetic field €0 = permittivity ~ J = current density
D = Electric displacement  u0 = permeability ¢ = speed of light
H = Magnetic field strength M = Magnetization P = Polarization

Integral form in the absence of magnetic or polarizable media:

I. Gauss' law for electricity §E ‘dA = gi
0

Gauss' law for magnetism §

I11. Faraday's law of induction §E .

V. Ampere's law

{5
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Differential form in the absence of magnetic or polarizable media:

I. Gauss' law for electricity V- E= E = 47l'kp

€o

Gauss' law for magnetism

I11. Faraday's law of induction { x F = _a_B

ot

dnk 1 JE

VxB= J+—
c? c* ot

J | OE
2 + 2
g,c0 ¢ ot

IV. Ampere's law

k= l = Coulomb's .2 _ ]
4me,  constant U E,

Differential form with magnetic and/or polarizable media:

V-D=p

I. Gauss' law for electricity
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D=¢gE+P D=¢g,E Freespace
General Isotropic linear
case D=eE V.B=0

. Gauss' law for magnetism

oB

1. Faraday's law of induction { x f = — —

ot

oD
IV. Ampere's law VxH=J+—

ot

B=u,(H+M) p_ u,H Free space

General B=uH Isotropiclinear
case magnetic medium
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Gauss’s Law

(Magnefic fields)

Integral form:

/Jﬂ‘;fH-dS =0
~— ——  Right
Loft

Left side:

The number of magnetic field
lmes -  perpendiculaily
passing through a closed
surface,

Right side:

Tdentically zero.

Differential form:

/1O§-I;7: 0

e -~
Lef Right

Left side:

Divergence of the magnetic
field — the tendency of the
field to “flow™ away from a
point than toward it.

Right side:

Identically zero.

The total magnetic flux passing
through any closed surface is
ZET0.

Flux enter the closed surface 1s
same with the flux come out
from the surface.

The divergence of the
magnetic field at any peint is
Ze10.

Faraday’s Law

Integral form:

Left side:

path. C.

Right side:

any surface. S

The circulation of the vector
electric field. £ around a closed

The rate of change with time
(d/dr) of magnetic field. through

Changing magnetic flux
through a surface induces
an emf in any boundary
path. C of that surface,
and a changing magnetic
field. H induces a
circulating electric field.

Differential form:

B IaH
—=; /0 7[

VxE
——

Left

e’

Ri:ghr

Left side:

circulate around a point.

Right side:

The rate of change of
magnetic field.
(dldr)

Curl of the electric field. — the
tendency of the field lines to

over ftime

A circulating  electric
field. 1s produced by a
magnetic field. / that
changes with time.

the
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Ampere’s Law

Integral form:

Left side:

The  circulation of  the
magnetic field. FHaround a
closed path. C.

Right side:
Two sources for the magnetic
field. A a steady conduction
currenl, J'(

and a changimg
electric field. F through any
surface. bounded by closed

path. C.

An electric current or a
changing cleetric  flux
through a surface
produces a
magnetic field around any
path. € that bounds that
surface.

circulating

Differential form:

Vni—d. 25
——

Lejt

Right

~

cFE

o

Left side:

Curl of the magnetic field. —
the tendency of the field lines
to circulate around a point.

Right side:

Two tferms represent the
electric current density. J, and
the time rate of change of the
electric field. E .

A circulating electric
field. is produced by a
magnetic field. /7 that
changes with time.
:3Lll ClCCll'iC currenl. or a
electric  field.
through a surface
produces a circulating
magnetic field. Zaround
any path that bounds that
surface.

changing
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Inconsistency of amperes |

Ampere's circuit baw states that the line infegral of tangential component
ol T arourd a cloged path is same as the net current Tenc enclosed by the

prath.
e
|Hadl=1,

By applying stoke’s theorsm,

J-H.n:-."." becamies J-J A%

co Therefore, Ax=H=.0 (3.14]
Thiz 12 true n case of statie EM telds.

But in case of time-varying fields, the above Ampere’s law shows same

inconsistency,
The inconsistency of ampere law Tor time varying Nelds is shown in two cases:
I. Forstatic EM ficlds, we have

Axf =4
Applving divergence on both sides, we get,

AlAaxH)=AJ
But divergence of curl of a vector field is always zero.
Therefore,

A{A=H1=0=AJ
The continuity of current sgquation is given by

—dp,

A
it

J = Current density

e, = Charge density

For static fields, mo carrent ie produced, therefore,
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[mplics oq. 3.15 15 satisficd bat for time varving fields, current is produced
and therefore,

—de, o
Ad- T ug (3.16)
al

Eqg. (3.13) and eq. (3.16) are contradicting each other.

This iz an inconsistency of ampere’s law and the Ampere's law must be
modilied for time varying fields.

2. Consider the typical example ot where the surface passes between the
capacitor plates.

The Ogure 15 shown below.

Fig 1.7 pal Twe sprfesces of idegrarion which ecplain ihe ingongigiency of Ampere"s |amw

In fig 3.3(a),

Based on Ampere’s circuit law we get fgure

Tl

[ di = [Fds=T

=5
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In fig 3.3(b), bazed the ampere’s circult law, we get,

(H .l = [Jds=1_ =0 (3.18)
{Hdl = [1ds=1,

Because no conduction current flows through 3,

Le. IO

n koth {a) and (b), same closed path is used, but equations 3.17 and 3,18
are different,

This iz an inconsistency of Ampere’s cireuit law,

This meonsistency of Ampere’s cirenit law in both cases (1) and (2) can
he resolved by including displacement current in Ampere's circuit law,

Substituting in (3,19, we get,

I (3,21}
dlt

This 1= the Maxwell equation {based oo ampere’s circurt Law) lor tiem
varying fields.

In cquation (3.21),

J; = Displacement current density

J = Conduction current density,

The conduction current density J involves low of charges. The
displacement current density S, doees not involve flow of charges.
Dizplacement current,

dir

I, = | ds = TFI.AF
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Solved problems:

Problem1:

(a) In a cylindrical conductor to thereqion 0.01 =r=0.02,0<zZ <1 m and
the current density is given by,
J =10 1997g, A/m?
Find the total current crossing the extential of this region with
@ = constant plane.

(b) Find the total current in a circular conductor of 4 mm radius if the
3 . . 0+
current density varies according to J = . A/mZ,
e
Solution

(a) Total current in the wire is given as,
002 !

I=[Jas= [ [ [10e19rG, || rdrdza, ]
S >

re O 2=

002 ]
_[ j 1071907 ofyei=

r=0.012>=0

002
10 j re—190r gy

r=001

w100, |0-02 0.02 _ _100r
N [alnid Tttt o
~100 |y 0, ~100

r=0.01

1 e—100r 0.02
10] ——(0.02¢2 —-00leV)+ —m———
100

—100 > 100

=2x10"3e"!
310 3¢2

(b) Total current is given as,
0D 0.0

- - -l
I=[jds=[ | ]—rdnf.p =2xx10* [ dr=2mx10*x0.004 =807 A
% r

g=l r=i r=i)
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Problem2:

IfJ = l‘(zcose a, +sin@ a,) A/m?Z, calculate the current passing through
=3

(a) A hemispherical shell of 20 cm radius
(b) A spherical shell of 10 cm radius

Solution

Total currentis givenas / = J.].(IS'

Here, dS = r2sin@d¢dOad,

(a) Total current passing through a hemispherical shell of 20 cm radius
is,

T/
%)

/2 2R
I=| | %(2c059¢ir+sin9do).(rlsin9d¢¢!9¢i,.)
=
0=00=0

re(.2

Il 2 cos @ sin @ dd oo
-
[ ESE N FCT § ]

=4
: _[ sin Ba(=in &)

el 2

P T
_dx|sin?@ =10mx =31.42 A
0.2 > |,

(b)) Total current passing through a spherical shell of 10 cm radius is,
4 f 3
1 o .
I = _r J T{._"'..l..ii.'l'-"la o, + Sin@ g ).0r? sin Qg d @ e, )

e ) i,

I
— I j L_LECGHHJ': sin & o 8
i) gy ol

3 b o
=2 % — _[ sinBd(sin@)
;

B=0 rail, |

_4rm|sin’@
01l 2 |

=)
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Problem3:

For the current density, J = 10zsin? ¢ d_ A/m?, find the current through the
cylindrical surface of r=2, 1=z=5m.

Solution
Total current passing through the cylindrical surface is,

5 2x - 5 2
f =.|-j.d§ = J J (10zsin® ¢ d ).(rdgdzd, ) = 1'I:].r'|:"2 ] I sin? ¢l

z=1¢=0 2 I g=0 _—

mxzx"_;x‘??”-mm:_?sala

Problem4:
Determine the current density function s associated with the magnetic
field defined by
(@) H =3i + 7] +2xk A/m (Cartesian)
(b) A = 6ra, +2ra, + 5a, A/m (Cylindrical)
(c) H =2pa, +3d, +cosB 4, A/m (Spherical)

(@) H=3i+7j+2xk

By Ampere’s law in Cartesian coordinates,
a, a, a.

Fuvsiall L 2

ox dy 09z

3 7 2x

(b) By Aampere’s law in cylindrical coordinates,
1.

L iy d.

. . ) %) )

T=Vxifg=2 = =
- clih

H, rH, H.

1 af. af, [ ab . Ak } . 1| el arr .
— — .r:_ R - — == |, + — - — e,
r r}-q;'.'r oz iz ol " e cligh

| ) . . 1. ' ; . i
e} IE-\"J i, +[_"’.:,ﬁ,-'._ .-r_} {ﬁ}J‘I‘;" +[ ] _l'.} fi":-_'-l":l'— '.{]'fﬁlf'] il .
r r.lq'_'l- o= =z ol ” ol Fa T ’
—_

]:-C-‘-hu_

ASme

(c) H = 2pd, + 3dg +cos@ a,
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By Ampere’'s law in spherical coordinates,
d, g o,
psin8|dp d8 Ay

H, pHy psin@H,

1|9 - aH, . (1Y 1 9H, a _
= = (H,sin@) - 1 _ 1
Pmﬂ[aﬂt R :|”P+[P]Lin9 ap ap L%
L[,y 9]
i o || — — —
plap P 5 |
1 |9 : J (1Y 1 3 _
= — .-H.' 8y——i(3 — 2 o <0
P*"'"E"[E'Hmm T }]HPJr[P]L:'ngaa[ P 5p Pee :]"3
1| @ J
[l — 3 i 2 -
+p|::7.lp{p ] E.IH'I p}:|.r.rﬂ

I cos287 . 1 I
=~ e /%~ I—}i:{‘u'- Bay +—d, Alm?
£\ sin

Problem?7:
The circular loop conductor having a radius of 0.15 m 1s placed in the

xy plane. This loop consists of a resistance of 20 Q as shown in Fig. If the

magnetic flux density is
B=05sin10%a. T

Find the current flowing through the loop.

200

Circular loop conductor
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Solution

Here since the loop is stationary and the magnetic field is time

only the transformer emf is induced. ,
varying,
Transformer emf induced is,

= —_”%.d.‘f = —jjfl(o.s sinl103ta. ) (rdrd¢d.)
s ot s ot < .

0.15 2=
~0.5%103 cos103¢ j J' rdrd¢
r=0 =0
5 Y0-15
—-0.5%x2mrx10% cosl03r "; :[
—y )

—103rcoslPrx0.01125
= —-35.34 coslO3r V




ELECTROMAGNETIC FIELDS AND TRANSMISSION LINES DEPT.ECE

UNIT — 111

EM WAVE CHARACTERISTICS
Contents:

Wave Equations for Conducting and Perfect Dielectric Media
Uniform Plane Waves - Definition, All Relations Between E & H
Reflection and Refraction of Plane Waves

Normal incidence for both perfect Conductor and perfect Dielectrics
Brewster Angle

Critical Angle

Total Internal Reflection

Poynting Vector and Poynting Theorem

IHlustrative Problems.
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Wave equations:

The Maxwell's equations in the differential form are
vxF -7+
de

V- D=p
V- E=0
Let us consider a source free uniform medium having dielectric constant &, magnetic
permeability # and conductivity & . The above set of equations can be written as
—~ = 0F
VxH =gE+r— 329
af 526

—

5250

[59(:)
[5.29(d))

Using the vector identity ,
v><v><ﬁ=v-(v-ﬁ)—vu
We can write from 2
v><v><§=v-(v-§)—v2§
ag

“ it

Substituting ¥ *# from 1

?-(?-E)—TEE=—;J%[

But in source free( ' £ =0) medium (eq3)
ViR =,.:J.f<:I'E+,.urs'aa .
i
In the same manner for equation eqn 1
VXVxH =V (V- H|-V'H

= J(?XE) + e%(?x Ef)

|- 0H L2 _#aﬁ
g | Al T oa

Since V' =0 from eqgn 4, we can write

— aH *H
ViH = ger| |+ ue
H [az] ’M[Bf‘
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These two equations

are known as wave equations.

Uniform plane waves:

A uniform plane wave is a particular solution of Maxwell's equation assuming electric
field (and magnetic field) has same magnitude and phase in infinite planes perpendicular to the
direction of propagation. It may be noted that in the strict sense a uniform plane wave doesn't
exist in practice as creation of such waves are possible with sources of infinite extent. However,
at large distances from the source, the wave front or the surface of the constant phase becomes
almost spherical and a small portion of this large sphere can be considered to plane. The
characteristics of plane waves are simple and useful for studying many practical scenarios

Let us consider a plane wave which has only Ex component and propagating along z .
Since the plane wave will have no variation along the plane perpendicular to z
a5, 38, _

e, xyplane, ¥ & . The Helmholtz's equation reduces to,

2
—‘f;* +EE, =0

The solution to this equation can be written as
E(2)=E (@) +E ()
= Bt 4+ B ol

By & &y are the amplitude constants (can be determined from boundary conditions).

In the time domain, £xZ-%) = Re(#, (z)e™)

£x(z.8) = B cos{at —kz)+ B cos(a +kz)

E&E;

assuming are real constants.

+ _ + _ +
Here, £x @) = &7 cos(a = 2] ronresents the forward traveling wave. The plot of &% (Z+2)
for several values of t is shown in the Figure below
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Figure : Plane wave traveling in the + z direction
As can be seen from the figure, at successive times, the wave travels in the +z direction.

If we fix our attention on a particular point or phase on the wave (as shown by the dot) i.e. ,
wt—kz = constant

Then we see that as t is increased to ¢+ £¢ | z also should increase to Z * £ so that
i+ A8 —ki(z + A7) = constant = @& — Sz
Or, @it =khz

fe @

Or, &k
When it —=1 ,

bz d=

lim —=—
we write #7? & df = phase velocity "%,

If the medium in which the wave is propagating is free space i.e., TG HT M

a 1

Ve

- - -c
Then m\"%fu N"ﬁ*rufn

Where 'C' is the speed of light. That is plane EM wave travels in free space with the speed of
light.

The wavelength 4 is defined as the distance between two successive maxima (or minima or
any other reference points).

) - [@t-k(z+ )] =27
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_ 27V _ Vs

Substituting , ey S
or, A =ve

Thus wavelength “also represents the distance covered in one oscillation of the wave.
Similarly, & (z.2) = By cos(at +iz) represents a plane wave traveling in the -z direction.
The associated magnetic field can be found as follows:
From (6.4),
v (2) = B e a,

1

= VxE
o

_ou_ ou 4
"% Tadme Ve
where HE is the intrinsic  impedance of the  medium.

When the wave travels in free space

m = F0 = 1207 = 37762
£o is the intrinsic impedance of the free space.

In the time domain,

,En-'-

E+(z,z) = ;y—cos(aﬂi - ﬁz)
A

Which represents the magnetic field of the wave traveling in the +z direction.

For the negative traveling wave,

E_(z,.ﬁ) =-a, E'?Jr Cos [mﬁ + ﬁzj

For the plane waves described, both the E & H fields are perpendicular to the direction of
propagation, and these waves are called TEM (transverse electromagnetic) waves.

The E & H field components of a TEM wave is shown in Fig below




DEPT.ECE

ELECTROMAGNETIC FIELDS AND TRANSMISSION LINES

Figure : E & H fields of a particular plane wave at time t.

Solved Problems:
1. The vector amplitude of an electric field associated with a plane wave that propagates in

the negative z direction in free space is given by ﬁm =2ay +3ay\%n

Find the magnetic field strength.

Solution:

The direction of propagation ngis —a,. The vector amplitude of the magnetic field is then given

1
= _ A
by = (377 3ay Zayj %n

/ﬂo
— 120n~377Q (Appendix D — Table D.1)
&o

*note 77, =
2. The phasor electric field expression in a phase is given by

A

E =
Find the following:

[ax +Eyay+(2+ j5)az] e~ 12:3(-0.6x+08y)

A

1- Ey .
2. Vector magnetic field, assuming = ¢ ande = ¢, .

3. Frequency and wavelength of this wave.
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Solution:

1. The general expression for a uniform plane wave propagating in an arbitrary
direction is given by

E=BEphe AT

where the amplitude vectorﬁm, in general, has components in the x, y, and z

directions. Comparing equation 6.3 with the general field equation for the plane
wave propagating in an arbitrary direction, we obtain

B-r=PBxx+Byy+paz
=B (cos Bxx + cos B,y + cos 6,z)
=2.3(-0.6x + 0.8y + 0)

Hence, a unit vector in the direction of propagation ng is given by
ng = -0.6ax + 0.8ay.

Because the electric field E must be perpendicular to the direction of propagation ng, it must
satisfy the following relations:

nB.l:: =0

Therefore, (-0.6ax + 0.8ay) - [ax + l:jy ay+ (2 + j5) az] =0

06+08E,=0

Hence, E y =0.75. The electric field is given by

E=|ax+Eyay+(2+5) az] g~ 12:3(-06x+08y)

2. The vector magnetic field H is given by

ay ay a
-06 08 0
1 075 2+]j

A 08(2 + j5) . _3
H, =—/— "~ —-(4.24 + j10.6)*
X 377 ( J ) 10
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~ 06(2+ j5) . 3
Hy=""—0—"= (318 j7.95)x10

g _06(075+08 3315103
£ 377 e

The vector magnetic field is then given by

= (ﬁx ay+Ay ay+1, az) o~ 12.3(-06x+08Y)

The wavelength A is given by

Reflection and Refraction at Plane Interface between Two Media:

Figure 6.7 shows two media with electrical properties ¢;and xq in medium 1, and gy and o in
medium 2. Here a plane wave incident angle ; on a boundary between the two media will be
partially transmitted into and partially reflected at the dielectric surface. The transmitted wave is
reflected into the second medium, so its direction of propagation is different from the incidence
wave. The figure also shows two rays for each the incident, reflected, and transmitted waves. A
ray is a line drawn normal to the equiphase surfaces, and the line is along the direction of
propagation.
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Incident
rays Reflected
rays

Reflected
rays

Figure 6.7

The incident ray 2 travels the distance CB, while on the contrary the reflected ray 1 travels the
distance AE. For both AC and BE to be the incident and reflected wave fronts or planes of
equiphase, the incident wave should take the same time to cover the distance AE. The reason
being that the incident and reflected wave rays are located in the same medium, therefore their
velocities will be equal,

CB AE

V1_V2

ABsing; = ABsin 6,

With this being the case then it follows that

What is the relationship between the angles of incidence & and refraction &r ?

It takes the incident ray the equal amount of time to cover distance CB as it takes the refracted
ray to cover distance AD —

CB AD

Vi Vo

And the magnitude of the velocity V1 in medium 1 is:
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And in medium 2:

CB = ABsing,
AD = ABsinég,

Therefore,

~ sin 6; V2

For most dielectrics wup = 14 = 1,

sSin g &
Therefore, d I 74
Slnet &1

M=t =

Equation 6.12 is known as Snell’s Law of Refraction.

Behavior of Plane waves at the interface of two media:

We have considered the propagation of uniform plane waves in an unbounded
homogeneous medium. In practice, the wave will propagate in bounded regions where several
values of £ # < will be present. When plane wave travelling in one medium meets a different
medium, it is partly reflected and partly transmitted. In this section, we consider wave reflection

and transmission at planar boundary between two media.
A

Medium 1 Medium 2
&, p, 3
E, E
A
é:.er 2

L,

By
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Fig 6 : Normal Incidence at a plane boundary
Casel: Let z = 0 plane represent the interface between two media. Medium 1 is characterised by

IiEl”'s*rl’“crljand medium 2 is characterized by RN .Let the subscripts 'i' denotes incident,
r' denotes reflected and 't' denotes transmitted field components respectively.
The incident wave is assumed to be a plane wave polarized along x and travelling in medium 1

Eal

along % direction. From equation (6.24) we can write

fay

E, (2) = B ay

Hi(z) - LaxE, (2) -
s

. ) M=
h=fsem(oties) " Yo+ jes

where
Because of the presence of the second medium at z =0, the incident wave will undergo partial

Ll

reflection and partial transmission.The reflected wave will travel along “ in medium 1.
The reflected field components are:

The transmitted wave will travel in medium 2 along “ for which the field components are

—_ i
= —FE
Er=EBpea,

In medium 1,

Ey=Fi+Eygng H1=Hi+H,
and in medium 2,

By =Frgng B2 =T

Applying boundary conditions at the interface z = 0, i.e., continuity of tangential field
components and noting that incident, reflected and transmitted field components are tangential at
the boundary, we can write
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Ei{0)+ B (0)= B {0)
& Hi(0)+H(0)=H:(0)
From equation 3to 6 we get,
E‘.il:i' + E?’r:' = E!‘l:i'
B B By
oo
Eliminating E ,
B By 1
T Th

_—i =E‘mI l+i
T o T

(B * &y )

is called the reflection coefficient.
From equation (8), we can write

28, =B, |1+0
T

g,=— g, =Tz,

i

or, ?.‘-'11 + ?.:'12

is called the transmission coefficient.
We observe that,

T = 21, _ My i R —1+T
R, T,

The following may be noted
(i) both *and T are dimensionless and may be complex
(ii) 0< ]z <1

Let us now consider specific cases:
Case I: Normal incidence on a plane conducting boundary

The medium 1 is perfect dielectric (0,=0) and medium 2 is perfectly conducting (7, =) .
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My =

h= \/[fmﬂlj Jjoe)
=J@EE = J8

From (9) and (10)

t=-1

and T =0

Hence the wave is not transmitted to medium 2, it gets reflected entirely from the interface to the
medium 1.

—

S Ei(z) = B g, - B o™ a, =-2jE, sin fza,

o

S B (z.£) =Fe [—EU.r'Ew sl ,a?izej‘":].:z’; =28, sn fzsin mr.;x

&
Proceeding in the same manner for the magnetic field in region 1, we can show that,

— ~ 2R
Hl[z,ﬁj =a, 2 oos fzcos @

T
The wave in medium 1 thus becomes a standing wave due to the super position of a forward

travelling wave and a backward travelling wave. For a given ' t', both £iand ivary
sinusoidally with distance measured from z = 0. This is shown in figure 6.9.

mr = Fags2

“-,___‘_“

o NN
v

@l = 7

\

fa) Ep versus g o=
parmer
conduUetor

o= gl
(b) Hy versus 2 wr e sl =0

Figure 7: Generation of standing wave
Zeroes of E1(z,t) and Maxima of Hy(z,t).
Maxima of E1(z,t) and zeroes of Hi(z,t).
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soccurat Bz =-am orz= —925

boccur at Sz =~ (2 +1)?—;

or = —[2?2 +1)§, a=0172%2. .

Case2: Normal incidence on a plane dielectric boundary : If the medium 2 is not a perfect

conductor (i.e. 0y~ =) partial reflection will result. There will be a reflected wave in the

medium 1 and a transmitted wave in the medium 2.Because of the reflected wave, standing wave
is formed in medium 1.

From equation (10) and equation (13) we can write
E1=E, (e_"x + l"e"z:lgx

Let us consider the scenario when both the media are dissipation less i.e. perfect dielectrics (
=0, e, = D)

W= =08
Yo = J@JLE, = 05

In this case both 71and 72 become real numbers.
EE'H = &;.;E'iﬂ (e'ﬁ'x + re”ﬁ)
= &xﬁ'&, ([1_ +T) oIBE LT (me _ é—.r;ﬁnx):l
= axB, [Te™% +T(2jsin §2))
From (6.61), we can see that, in medium 1 we have a traveling wave component with amplitude
TEi, and a standing wave component with amplitude 2JEi,. The location of the maximum and the

minimum of the electric and magnetic field components in the medium 1from the interface can
be found as follows. The electric field in medium 1 can be written as

E = &;.;E,-‘,e‘”" (1 + l"é"ﬂ’ﬁx)

If 72 7 Tije T'>0
The maximum value of the electric field is

& -7 (0+7)

and this occurs when

28z . =—Zn
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.. |
The minimum value of is
& -2 (-1)
And this occurs when
282 = ~(2n+ )7
A

o = —[233 +1:|—
or

For "2 <™ je <o

1-T)

E
The maximum value of | 1|is By

which occurs at the zmin locations and the minimum

value of |§1|is E,(1+T)

(6.66).

which occurs at zmax locations as given by the equations (6.64) and

.

From our discussions so far we observe that |E|mn can be written as
|2 _ 1+

2

=

The quantity S is called the standing wave ratio.

<M < .
As Ve IF< Lthe range of S is given by 1 £ & =co
From (6.62), we can write the expression for the magnetic field in medium 1 as

El = a}. E_‘:'?E_J:ﬁlx (1 _ l-éjﬂﬁx)
0}

From (6.68) we find that |H1| |El|

versa.

In medium 2, the transmitted wave propagates in the + z direction.

will be maximum at locations where iSs minimum and vice

Brewster Angle:

Brewster angle is defined as the angle of incidence at which there will be no reflected wave. It
occurs when the incident wave is polarized such that the E field is parallel to the plane of
incidence.

Brewster Angle — (from Brewster’s Law), the polarizing angle of which (when light is
incident) the reflected and refracted index is equal to the tangent of the polarizing angle. In other
words, the angle of incidence of which there is no reflection.

From the reflection coefficient expression-
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. 1y C0s 8, — 1, c0s6;
1™ 1, cos6; + 1, cos 6

It can be seen that there is an angle of incidence at fll =0. Thisangle can be obtained when
17, COS6; = 17,C0S G

L
COSj = —COS G

T

The angle of incidence §; , at which fn =0, is known as the Brewster angle. The expression for
this angle in terms of the dielectric properties of media 1 & 2, considering Snell’s Law for the

special case 14 = o = 1,1
singi Vi1 &2
sing;y Vo \ e

,Ll]_:ﬂz :ll’lo

This condition is important, because it is usually satisfied by the materials often used in optical
applications.

Equation 6.19 will take the form —

&1
CoSHj = ,|— COSb;
€2

Square both sides of equation 6.20 and use Snell’s Law for the special case of 14 = pp = u, for
the following result:

P € _
c0s? 6 L = cos? O = —1(1 —sin? Ht)
&2 &2

:j—;(l—sinzei)

The last substitution was based on Snell’s Law of refraction. Therefore,

2
& &
(1-sin26;) = 1 —;sin2 o;
€2
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& .
1-“L = sin2g;
&2

€2

sin? g =

&t &
The Brewster angle of incidence is

. £2
sin 6; = 52+ 61

A specific value of 6; can be obtained from equation 6.21 -

&2
1- cos? O; =
&+ &

&2 &1
cos? 6 =1- = =
g2+ &1 &+ &

‘1

COS 6 =
&+ &

From equations 6.22 & 6.23 —

&
tan6'i:‘/;2
1

This specific angle of incidence 6jis called the Brewster angle 6.

1 |&2
Op=tan1 |-%
B &1

Critical angle:

In geometric optics, at a refractive boundary, the smallest angle of incidence at which total
internal reflection occurs. The critical angle is given by



https://www.its.bldrdoc.gov/fs-1037/dir-017/_2454.htm
https://www.its.bldrdoc.gov/fs-1037/dir-002/_0294.htm
https://www.its.bldrdoc.gov/fs-1037/dir-037/_5510.htm
https://www.its.bldrdoc.gov/fs-1037/dir-037/_5510.htm
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Where Oc is the critical angle, n 1 is the refractive index of the less dense medium, and n 7 is the
refractive index of the denser medium.

Angle of incidence: The angle between an incident ray and the normal to a reflecting or
refracting surface

Total internal

Critical angle reflection

Refraction of light at the interface between twa media, including total internal reflection.

Total Reflection at Critical Angle of Incidence

In the previous section it was shown that for common dielectrics, the phenomenon of total
transmission exists only where the electric field is parallel to the plane of incidence known as
parallel polarization.
There is a second phenomenon existing for both polarizations:
e Total reflection occurring at the interface between two dielectric media
e A wave passing from a medium with a larger dielectric constant to a medium with
smaller value of ¢

Snell’s Law of refraction shows —

singi _ &2 Sing: —
Siﬂ@t &1 ! &9

sin 9t

€

Therefore, if &1 > &p,and 6; > 6; then a wave incident at an angle &; will pass into medium 2
at a larger angle ;.

Definition:
6, (critical angle of incidence) is the value of @, that makes 6, = /2, see Figure 6.13.

Substitute 6 =n/2 in equation 6.26 to get —

. &9 . &
5|n90=1/—,0r G =sint /—2
&1 &1
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Figure 6.13 illustrates the fact that& > & ,if &g > & . The critical angle 6.is defined as the
value of g;at which 6, =mn/2.

Envision a beam of light impinging on an interface between two transparent media where
nj < n¢. At normal incidence (6= 0) most of the incoming light is transmitted into the less

dense medium. As 6; increases, more and more light is reflected back into the dense medium,
while & increases. When & = 90°, 6;is defined to be 6. and the transmittance becomes zero.
For 6,> 0. all of the light is totally internally reflected, remaining in the incident medium.

Poynting Vector and Power Flow in Electromagnetic Fields:

Electromagnetic waves can transport energy from one point to another point. The electric and
magnetic field intensities asscociated with a travelling electromagnetic wave can be related to the
rate of such energy transfer.
Let us consider Maxwell's Curl Equations:
3B

de
vxH=F+22

dt

Using vector identity

THE =

?.(EX§) —HVE-EVxH

the above curl equations we can write

an
+
3
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ar, T(EXEJ =-

In simple medium where < #and = are constant, we can write

o8 _3(1 Hg]

Tar a2

Y JL.c .
d  de) 2 and EJ=0F

~ = afl 1
.'.?.(EXH)=—— e B+ uH |- oF
alz 2

Applying Divergence theorem we can write,

(EXE)..::‘S=—E Yeme L ay - (omtay
il 2 2

83‘[[%5 E* +% HE]W
¢ represents the rate of change of energy stored in the electric

JJEW

The term

and magnetic fields and the term represents the power dissipation within the volume.
Hence right hand side of the equation (6.36) represents the total decrease in power within the
volume under consideration.

—

The left hand side of equation (6.36) can be written as where £ =ExH
(W/mt?) is called the Poynting vector and it represents the power density vector associated with
the electromagnetic field. The integration of the Poynting vector over any closed surface gives
the net power flowing out of the surface. Equation (6.36) is referred to as Poynting theorem and
it states that the net power flowing out of a given volume is equal to the time rate of decrease in
the energy stored within the volume minus the conduction losses.

(2% H)a =g Pa

Poynting vector for the time harmonic case:

For time harmonic case, the time variation is of the form é‘m, and we have seen that

instantaneous value of a quantity is the real part of the product of a phasor quantity and ™ \when
cos @ js used as reference. For example, if we consider the phasor

E[z) = a:: E.(z)= .:;:: EgiFE
then we can write the instanteneous field as
E[z,.ﬁ:l =Ee [E[z) é"i""’t] = B cos( @t — 8z) c;;

when Eo
Let us consider two instanteneous quantities A and B such that

A=Ee [Aej"”) = |_r'1||:os (@ + &)
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H=Ee [Béj‘"’) = |B| cos (@t + &)

where A and B are the phasor quantities.
o, A"l

B =|B|e”

Therefore,

Af = |ﬂ|cos|[mﬁ + &)|B|cos[mﬁ + ﬁ)

=gmwwmqa—m+mm@m+a+ﬁﬂ

Since A and B are periodic with period & | the time average value of the product form AB,
denoted by 45 can be written as

— 1f
AB = —Jﬂﬂcx’z
7

Further, considering the phasor quantities A and B, we find that
45" = |l Bl = |4]g]e

Re(AB') =|4||8|cos (@~ 8)

and , Where * denotes complex conjugate.

— 1 .
N B=§Re(_&3)

The poynting vector £ = Z* can be expressed as
P-a,(BH,-EH,)+a (BH, - EH,)+ a,(EH, - BH,)

If we consider a plane electromagnetic wave propagating in +z direction and has only =

component, from (6.42) we can write:
Be=E (z.0)H,(z.6)a
Using (6)

- 1 . b
FPrav = ERE [Ex [z) H}, [z)a

Em=%RﬂEJQXHﬂﬂ)

o

E(z) = E,(2)a, goq H ()= H,(2)a

where plane wave under consideration.




ELECTROMAGNETIC FIELDS AND TRANSMISSION LINES DEPT.ECE

For a general case, we can write

E. =%Re(§x§'

. . . . . 1_5@ =Fe (EJ
and time average of the instantaneous Poyntlng vector Is given by .

Solved Problems:

1. Calculate the polarization angle (Brewster angle) for an air Water(gr =81) interface at
which plane waves pass from the following:
(a) Air into water.
(b) Water into air.
SOLUTION

1. (a) Airinto water:

The Brewster angle is then given by

&
05 =tant =2 =6.34°
&

Therefore,
0= tan—14/81 = 83.7°

(b) Water into air:
ér1 =81 and & = 1

1
=tan1,/--=6.34°
0p =tan a1

To relate the Brewster angles in both cases, let us calculate the angle of

Hence,

refraction.
singi  |&2
sin Qt &1

Therefore, in case a,

sin QB
- =481
sin 6;
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Therefore,

) sin83.7
sin 6t = 9 =011

Or 6; = 6.34°, which is the same as the Brewster angle for case b. Also, the angle of refraction
in case b is given by Snell’s Law as:

Siﬂ@B_ Eo _\/I
singy 81l¢, V81

sin 6.34°
sin6; = —1 =099

Therefore,

81
Or 6y =83.7°, which is the Brewster angle for case a.

2. The index of refraction of liquid is 1.9. What is the critical angle for a light ray travelling in
the liquid toward a flat layer of air?

Solution

The critical angle is determined by the following expression (Snell’s law, in which the angle of

0
90)

refraction is

n, sin 8., = n, sin 90°

Here ™1 = 1.9 is the index of refraction of medium 1 (liquid), np =1 is the index of
refraction of medium 2 (air). We substitute the known values in the above expression and find
the critical angle

3. Find the critical angle for total internal reflection for light going from ice (index of refraction
= 1.31) into air.

Solution

The critical angle is defined as the angle of incidence for which the corresponding angle of

90Y

refraction is . Then the Snell’s law takes the following form

n, sin 8., = n, sin 6,
M = 1.314¢ the index of refraction of medium 1 (ice), Bffis the unknown critical
=1

Here

is the index of refraction
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1.31sin 6., = 1sin90° = 1
Then

1
6. =sin"1—— = 49.76Y
“r 1.31
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UNIT -1V
Transmission Lines - I:

Contents:
Types
Parameters
Transmission Line Equations
Primary & Secondary Constants
Expressions for Characteristics Impedance, Propagation Constant, Phase and
Group Velocities
Infinite Line Concepts
Distortion - Condition for Distortion less Transmission and Minimum
Attenuation
Ilustrative Problems.
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Introduction:

A transmission line is used for the transmission of electrical power from generating substation to
the various distribution units. It transmits the wave of voltage and current from one end to
another. The transmission line is made up of a conductor having a uniform cross-section along
the line. Air act as an insulating or dielectric medium between the conductors.

Fig. Transmission Lines

Types of Transmission Lines

The different types of transmission lines include the following.

Open Wire Transmission Line

It consists pair of parallel conducting wires separated by a uniform distance. The two-wire
transmission lines are very simple, low cost and easy to maintain over short distances and these
lines are used up to 100 MHz Another name of an open-wire transmission line is a parallel wire
transmission line.

Coaxial Transmission Line

The two conductors placed coaxially and filled with dielectric materials such as air, gas or solid.
The frequency increases when losses in the dielectric increases, the dielectric is polyethylene.
The coaxial cables are used up to 1 GHz. It is a type of wire which carries high-frequency signals
with low losses and these cables are used in CCTV systems, digital audios, in computer network
connections, in internet connections, in television cables, etc.
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Transmission Lines
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Optic Fiber Transmission Line

The first optical fiber invented by Narender Singh in 1952. It is made-up of silicon oxide or
silica, which is used to send signals over a long distance with little loss in signal and at the speed
of light. The optic fiber cables used as light guides, imaging tools, lasers for surgeries, used for
data transmission and also used in a wide variety of industries and applications.

Microstrip Transmission Lines

The microstrip transmission line is a Transverse Electromagnetic (TEM) transmission line
invented by Robert Barrett in 1950.

Wave Guides

Waveguides are used to transmit electromagnetic energy from one place to another place and
they are usually operating in dominant mode. The various passive components such as filter,
coupler, divider, horn, antennas, tee junction, etc. Waveguides are used in scientific instruments
to measure optical, acoustic ad elastic properties of materials and objects. There are two types of
waveguides are Metal waveguides and dielectric waveguides. The waveguides are used in optical
fiber communication, microwave ovens, space crafts, etc.

Applications

The applications of transmission line are

Power transmission line
Telephone lines

Printed circuit board
Cables

Connectors (PCI, USB)

Parameters of transmission line (Primary Constants):

The performance of transmission line depends on the parameters of the line. The transmission
line has mainly four parameters, resistance, inductance, capacitance and shunt conductance.
These parameters are uniformly distributed along the line. Hence, it is also called the distributed
parameter of the transmission line.
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Tranmission Line Model
Z=R+jwL, Y=G +jwC

The inductance and resistance form series impedance whereas the capacitance and conductance
form the shunt admittance. Some critical parameters of transmission line are explained below in
detail

Line inductance — The current flow in the transmission line induces the magnetic flux. When
the current in the transmission line changes, the magnetic flux also varies due to which emf
induces in the circuit. The magnitude of inducing emf depends on the rate of change of flux. Emf
produces in the transmission line resist the flow of current in the conductor, and this parameter is
known as the inductance of the line.

Line capacitance — In the transmission lines, air acts as a dielectric medium. This dielectric
medium constitutes the capacitor between the conductors, which store the electrical energy, or
increase the capacitance of the line. The capacitance of the conductor is defined as the present of
charge per unit of potential difference.

Capacitance is negligible in short transmission lines whereas in long transmission; it is the most
important parameter. It affects the efficiency, voltage regulation, power factor and stability of the
system.

Shunt conductance — Air act as a dielectric medium between the conductors. When the
alternating voltage applies in a conductor, some current flow in the dielectric medium because of
dielectric imperfections. Such current is called leakage current. Leakage current depends on the
atmospheric condition and pollution like moisture and surface deposits.

Shunt conductance is defined as the flow of leakage current between the conductors. It is
distributed uniformly along the whole length of the line. The symbol Y represented it, and it is
measured in Siemens.
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Primary & Secondary Constants:

The primary line constants are the resistance, inductance, conductance, and capacitance per unit
length of the transmission line.

However, the term “secondary line constants” is not commonly used. It is normally known as
“quaternary parameters” or “quaternary constants” used in telecommunication line analysis.
These parameters extend the analysis of transmission lines beyond the primary parameters by
including additional effects, such as radiation and shunt capacitance. Quaternary parameters are
also used to model the behavior of transmission lines at higher frequencies.

Propagation Constant Definition:

Electromagnetic waves propagate in a sinusoidal fashion. The measure of the change in
amplitude and phase per unit distance is called the propagation constant. Denoted by the
Greek letter y. The terminologies like Transmission function, Transmission constant,
Transmission parameter, Propagation coefficient, and Propagation parameter are synonymous
with this quantity. Sometimes a and B are collectively referred to as Propagation or
Transmission parameters.

The propagation constant can be mathematically expressed as:
y=a+jp
Where:

o (alpha) represents the attenuation constant, which measures the rate of amplitude decay of the
signal as it travels through the medium. It is a real number and is usually measured in Nepers per
unit length or decibels per unit length.

B (beta) represents the phase constant, which determines the phase shift experienced by the
signal as it propagates through the medium. It is an imaginary number and is usually measured in
radians per unit length.

The magnitude of the propagation constant (y) gives the overall rate of signal decay, while the
argument or phase angle of the propagation constant (arg(y)) gives the phase shift experienced by
the signal.

Propagation Constant of a Transmission Line:

The propagation constant for any conducting lines (like copper lines) can be calculated by

relating the primary line parameters.

y=VZY

Where, Z = R +ioL is the series impedance of line per unit length.

Y = G + i0C is the shunt admittance of line per unit length.
100
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Characteristic Impedance (Zo)

As we already discussed that primary constants are very significant in transmission lines, they
make characteristic impedance (Zo) a very significant parameter as well, because characteristic
impedance (Zo) involves all four of the primary constants in its expression.

What is Characteristic Impedance?

Characteristic impedance can be defined as the ratio of amplitude of voltage to the amplitude of
current of a unidirectional wave travelling from source to load along a uniform transmission line
in the absence of reflections.

It may also be defined as a square root of the ratio of series impedance of a line to its shunt
admittance.

Where,
Z =R + jwL (series impedance per unit length per phase)
Y =G + jwC (shunt admittance per unit length per phase)

R, L, G and C are the primary constants of a transmission line, and the above expression
confirms that characteristics of a transmission line are described by primary line constants.

Transmission Line Equations

Let us take the equivalent circuit of the transmission line, for this we are going to take the
simplest form of transmission line which is two wirelines. These two wirelines are made up of
two conductors separated by a dielectric medium usually air medium, which is shown in the
below figure

If we pass a current (1) through the conductor-1, will find that there is a magnetic field around
the current-carrying wire of a conductor-1 and the magnetic field can be illustrated using series
inductor due to the current flow in the conductor-1, there should be a voltage drop across the
conductor-1, which can be illustrated by a series of resistance and inductor. The setup of the two-
wireline conductor can be made to a capacitor. The capacitor in the figure will always be loosy to
illustrate that we have added conductor G. The total setup i.e, series resistance an inductor,
parallel capacitor, and conductor make up an equivalent circuit of a transmission line.
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|
Conductor 1 %

Conductor 2

Fig.equivalent_circuit_of a transmission_line_1

The inductor and resistance put together in the above figure can be called as series impedance,
which is expressed as

Z = R+joL
The parallel combination of capacitance and conductor n the above figure can be expressed as

Y = Gtjoc

Conductor 1

Conductor 2

Where | — length
Is — Sending end current
Vs — Sending end voltage

dx — element length

X — a distance of dx from sending end
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At a point, ‘p’ take current(I) and voltage(v) and at a point, ‘Q’ take [+dV and V+dV
The change in voltage for the length PQ is the

V-(V+dV)=(R+joL)dx * I
V-V-dv = (R + joL) dx * |
-dv/dx = (R + joL) * |
I-(1 +dl) = (G + joc)dx * V
I-1+dl = (G + joc)dx * V
-dl/dx = (G + jooc) * V
Differentiating eq(1) and (2) with respect to dx will get

-d?v/dx? = (R + joL) * dl/dx
-d?1/dx? = (G + joc) * dV/dx
Substituting eq(1) and (2) in eq(3) and (4) will get

-d>v/dx? = (R + joL) (G + joc) V
-d?1/dx? = (G + joe) (R + joL) |
Let P?= (R + joL) (G + joc)
Where P — propagation constant

Substitute d/dx = P in eq(6) and (7)

-d2v/dx? = P2V
-d?1/dx? = P?|
General solution is

V = AePX+ BePX
| = CeP*+ DePX
Where A, B C and D are constants

Differentiating eq(10) and (11) with respect to ‘x’ will get

-dv/dx = P (Aepx — Be-px)
-dl/dx = P (Cepx — De-px)
Substitute eq(1) and (2) in eq(12) and (13) will get

-(R+joL)* 1 =P ( AeP*+ BeP)
-(G+joc)* V=P (CeP*+ DePx)
Substitute ‘p’ value in eq(14) and (15) will get

I =-p/R + joL * (AeP* + BeP¥)
=G + joc /R + joL * (AeP*+ BeP¥)
V =-p/ G+ joc * (CeP*+ DeP*)
=R + joL /G + joc * (CePX+ DePx)
Let Zo=VR + joL / G + joc
impeden
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Substitute boundary conditions x=0, V=Vs and I=Is in eq(16) and (17) will get

IsZo=-A+B
Vs [Zo=-C+D
From (20) will get A and B values

A=Vs-lIsZo
B =Vs +1s Zo
From eq(21) will get C and D values

C=(Is-Vs/Zo) /2
D =(Is+ Vs /Zo) /2
Substitute A, B, C and D values in eq(10) and (11)

V= (Vs -Is Zo) eP* + (Vs +1s Zo)ePX
= Vs (eP* +e-px/2) —Is Z-0(eP* -e'P¥/2)
= Vs coshx — Is Zo sinhx
Similarly

1= (Is -Vs Zo) eP* + (Vs [Zot+ls [ 2)eP*
=ls (eP*+ePX/2) Vs [Zo (eP* -e'PX/2)
=lIs coshx — Vs /Zo sinhx
Thus V = Vs coshx — Is Zg sinhx
| = Is coshx — Vs /Zg sinhx
Equation of transmission line in terms of sending end parameters are derived

Phase and Group Velocities:

Phase velocity is the speed at which a point of constant phase moves through a medium. In
simple terms, it’s like tracing the path of a ruffling wave crest or trough marking a constant
phase in the wave.

In physics, phase velocity can be calculated by using the simple formula:
W

L‘p = L
Where:

e o indicates phase velocity
e Vpistheangular frequency of the wave
e ks the wave number

It's worth mentioning that phase velocity depends on the medium the wave passes through. In
some media, the phase velocity might change, leading to phenomena such as refraction.
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Group Velocity

Group velocity is defined as the derivative of the wave's angular frequency with respect to its
wave number. It can be mathematically expressed as:

dw

J“-"‘;!J

_:?k

Relation Between Group Velocity and Phase Velocity
The Group Velocity and Phase Velocity relation can be mathematically written as-

dV;
Vo= Vot kE

Where,

e Vyisthe group velocity.
e V), isthe phase velocity.
e ks the angular wavenumber.

The group velocity is directly proportional to phase velocity. This means-

e When group velocity increases, proportionately phase velocity will also increase.
e When phase velocity increases, proportionately group velocity will also increase.

For the amplitude of wave packet let-

e o is the angular velocity given by o=2nf
k is the angular wave number given by

k- ¥

tistime

X be the position

V), phase velocity

Vg be the group velocity
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The phase velocity of a wave is given by the following equation:

..(egn1)
Rewriting the above equation, we get:

e = kﬂp
...(eqn 2)
Differentiating (egn 2) w.r.t k we obtain,

. dw
LW __ gy L — B
ak — Up kg

...(eqn 3)

As

dur
Vo= &

(egn 3) reduces to:

du.
vg=Upt+ kgp

The above equation signifies the relationship between the phase velocity and the group velocity.

Infinite Line Concepts:

A finite line is a line having a finite length on the line. It is a line, which is terminated, in
its characteristic impedance (ZR=20), so the input impedance of the finite line is equal to the
characteristic impedance (Zs=Z0).

An infinite line is a line in which the length of the transmission line is infinite. A finite
line, which is terminated in its characteristic impedance, is termed as infinite line. So for an
infinite line, the input impedance is equivalent to the characteristic impedance.

Figure: infinite line
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—» The ratio of the voltage applied to the current flowing will give the
input impedance of an infinite line. This input impedance is known

as characteristic impedance of'the line and is denoted by Z; "

Therefore £ = e

“Si

Where V., is sending end voltage of an infinite line and [.; is sending end

current of an infinite line.

Current at any point at a distance ¥ ° from the sending end is given bv

. . l
I =ce™ +de™ ™ >

The values of ‘¢’ and‘d” now determined by considering an infinite line.

The values of ¢’ and'd” now determined by considering an infinite line.

At sending of an infinite line ¥ = 0 and [ = [; applying these conditions

we get

I, =c+d

However at the receiving end of the infinite line x = and [ = 0.
Applying these conditions to same equation

O=cxXxew+0

cxXxoo=0

Thus eitherc = 0 oroo = 0 but o can not equal to zero.

Thereforec =0

Whene =0, I, =d
Putting these values in equation (1), we get
[ =1, ,e P>
This equation gives current at any point ot an infinite line.
Similarly the voltage at any point of an infinite line can be given as

V= LI;:'E *
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Infinite line is equivalent to a finite line terminated in

ts

—» If a finite length of line is joined with a similar kind of infinite line,
their total input impedance is the same as that of infinite itsclf.

—> A finite line terminated by its Z, . behaves as an infinite line.

— Consider a line of length ‘0" terminated in its characteristic

impedance Z; .

Let the voltage and current at the termination be Vgand [ respectively.

le— Finite  — je— Infinitc line

I/p impedance is

I/p impedance is
Zy Fig: equivalent of an infinite linc.
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iz . Vg
Therefore — = 2,
Iz

We know that voltage and current equations at a point distance X ° from the

sending end in terms of sending end voltage and current is given by

» = V,coshPx — I.Z, sinh Px

1
e A [V; sinh Px —I_Z, cosh Px]

0
Atx =L v =Vzand! = Iz we get

Vg = V,cosh Pl = I.Z, sinh Pl

Iy = —— [V, sinh Pl ~1,Z, cosh Pl]

1]

By dividing equation (1) and (2)

(V.cosh Pl — I.Z, sinh Pl)
%[l’; sinh Pl —I.Z, cosh Pl]
0

Iz

J : (Vecosh Pl ~IsZ, sinh Pl)
Since - _ 1= = Lo

UsZ, cosh Pl—V; sinh PI)
V.coshPl = I Z, sinh Pl = [_Z, cosh Pl = V_sinh Pl

V.(cosh Pl + sinh Pl) = I.Z,(cosh Pl + sinh Pl)
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Ve . : , . . .
But— is the input impedance of the line. Therefore
ig

Therefore the input impedance of a finite line terminated in its characteristic

impedance Z,, is the characteristic impedance of line.

By definition the input impedance of an infinite line is the characteristic
impedance of the line. Therefore a finite line terminated in its Z, . is equivalent

to an infinite line as both will have an input impedance Z; .

Distortion - Condition for Distortion less Transmission and Minimum
Attenuation:

It is desirable, however to know the condition on the line parameters that allows propagation
without distortion. The line having parameters satisfy this condition is termed as a distortion less
line.

The condition for a distortion less line was first investigated by Oliver Heaviside. Distortion
less condition can help in designing new lines or modifying old ones to minimize distortion.

A line, which has neither frequency distortion nor phase distortion is called a distortion less line.

Condition for a distortion less line
The condition for a distortion less line is RC=LG. Also,

a) The attenuation constant _ should be made independent of frequency. o = RG
b) The phase constant _ should be made dependent of frequency. p = o LC
c) The velocity of propagation is independent of frequency.

V=1/LC

For the telephone cable to be distortion less line, the inductance value should be increased
by placing lumped inductors along the line.

For a perfect line, the resistance and the leakage conductance value were neglected. The
conditions for a perfect line are R=G=0. Smooth line is one in which the load is terminated by its
characteristic impedance and no reflections occur in such a line. It is also called as flat line.

The distortion Less line
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If a line is to have neither frequency nor delay distortion, then attenuation constant and
velocity of propagation cannot be function of frequency.

Then the phase constant be a direct function of frequency

ey [)LC - AG+ J(RG-0 LO)+1)’ (LG +CR)

-

The above equation shows that if the the term under the second radical be reduced to equal
(RG + m2LC)2

Then the required condition for B is obtained. Expanding the term under the internal radical
and forcing the equality gives

R2G2- 2 o2LCRG+ o4L2C2+ ®2L2G2+ 2 o2LCRG+ ©2CR2 = (RG+ o2LC)2
This reduces to
2 2LCRG+ w2L2G2+ ©2CR2=0
(LG-CR)2=0
Therefore, the condition that will make phase constant a direct form is
LG=CR

A hypothetical line might be built to fulfill this condition. The line would then have a value of 3
obtained by use of the above equation.

Already we know that the formula for the phase constant
p= oLC
Then the velocity of propagation will be v=1/LC
This is the same for the all frequencies, thus eliminating the delay distortion.

May be made independent of frequency if the term under the internal radical is forced to reduce
to (RG +o LC)2

Analysis shows that the condition for the distortion less line LG = CR, will produce the desired
result, so that it is possible to make attenuation constant and velocity independent of frequency
simultaneously. Applying the condition LG= RC to the expression for the attenuation
gives o = RG

This is the independent of frequency, thus eliminating frequency distortion on a line. To
achieve

LG=CR

Require a very large value of L, since G is small. If G is intentionally increased, attenuation are
increased, resulting in poor line efficiency.
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To reduce R raises the size and cost of the conductors above economic limits, so that the
hypothetical results cannot be achieved.

Propagation constant is as the natural logarithm of the ratio of the sending end current or voltage
to the receiving end current or voltage of the line. It gives the manner in the wave is propagated
along a line and specifies the variation of voltage and current in the line as a function of distance.
Propagation constant is a complex quantity and is expressed as y=a +j B.

The real part is called the attenuation constant, whereas the imaginary part of propagation
constant is called the phase constant.
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UNIT-V
Transmission Lines - 11:

Contents:
» SC and OC Lines
> Input Impedance Relations
» Reflection Coefficient
> VSWR
» Smith Chart - Configuration and Applications
> lllustrative Problems.
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Input Impedance Relations

e The input impedance of a transmission line is the impedance seen by any signal
entering it. It is caused by the physical dimensions of the transmission line and its
downstream circuit elements.

If a transmission line is ideal, there is no attenuation to the signal amplitudes and the
propagation constant turns out to be purely imaginary.

e When the transmission line length is infinite, the input impedance is equal to the
characteristic impedance.

Calculating the Input Impedance

Consider a lossless, high-frequency transmission line where the voltage and currents are given by
equations 1 and 2, with the input impedance, characteristic impedance, and load impedance as
Zin, Z0, and ZL, respectively.

V(z)=V*e?® +Te®) O

I(z)= V—(e‘”% —Te'” ) @)
o *
[" - Reflection co-eficient

As the transmission line is ideal, there is no attenuation to the signal amplitudes and the
propagation constant turns out to be purely imaginary. Let’s define the output terminals with axis
point z=0 and input terminals z=-L. Our objective is to find the impedance of the circuit when
looking from Z=-L.:

Ve (E:_j“& + [el® )
= : 7 3
J (E:_“r“& . ) -

e % L Te'#

#)

The input impedance is the ratio of input voltage to the input current and is given by equation 3.
By substituting equation 5 into equation 4, we can obtain the input impedance, as given in
equation 6:
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]_"= ZL' ZI:I
Z,t+ Zy

(5)

. o ; _ 1'
Z.r'n (_ .E) == ZD ZL+ jZD trﬂl(- ﬁ‘[ (6)
Z,+ jZytan(BL)

From equation 6, we can conclude that the input impedance of the transmission line depends on
the load impedance, characteristic impedance, length of the transmission line, and the phase
constant of the signals propagating through it.

It is already a known fact that the characteristic impedance Z0 is dependent on the distributed
parameters of the transmission line, such as resistance, inductance, capacitance, and conductance
(as given by equation 7), which are usually defined per unit length. Whenever any change is
made in the circuit, the input impedance changes.

Zy= R-l—j&JL (7)
G + jwC

The relationship between the characteristic impedance and input impedance can be deduced for
certain transmission lines. In the derivation of the input impedance equation, we have considered
the finite length of the transmission line. When the transmission line length is infinite, then the
input impedance of the transmission line is equal to the characteristic impedance. Whenever the
transmission line of finite length is terminated by a load impedance that is equal to the
characteristic impedance, there is no reflection of signals (according to equation 7). In this case,
the input impedance equals characteristic impedance.

OPEN AND SHORT-CIRCUITED LINES

As limited cases it is convenient to consider lines terminated in open circuit or short circuit,
that is with ZR = ooor ZR =0.

First, let us consider the question at hand: What is the input impedance when the transmission
line is open- or short-circuited?
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For a short circuit, Z; =0, " = —1, so we find

1 + D281
Zin(l) = Z“i T Te—i2Al

— 241

Multiplving numerator and denominator by +i5!, we obtain

e tifl _ —if

Zinll) = Z

Ve tiBl | o—ibl

(3.16.2)
Now we invoke the following trigonometric identities:

costl = % [{3_-?‘-” 1 ﬂ—_-;'tJ}

(3.16.3)

1 )
" — _ [oti0 _ —id
sint = 72 [".. e ]

(3.16.4)
Emploving these identities, we obtain:
j2 (sin 81)
Z.ln l) = Zp———
) 0 2 (cos A1)

[3.16.5)

and finally:

= +j £y tan Gl

[3.16.6)
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imaginary part of input impadance

o.25 oS o075
length [wanrelengtis]

(a) Short-circuit termination (= — 0O).

imagiary part of input impedance

0. 25 o5 o075
length [wanelengtis]

(b)) Open-circuit termination (=, — oo).

(b) Open-circuit termination (Z; — o).

For an open circuit termination, Z; — oo, I" = +1, and we find

Following the same procedure detailed above for the short-circuit case, we find

Figure 3.16.1 (b) shows the result for open-circuit termination. As expected, Z,, — oc forj — (),

and the same A /2 periodicity is observed. What is of particular interest now is that at [ = A\/4 we

see 7. = (. In this case, the transmission line has transformed the open circuit termination into

<L

a short circuit.
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And for the short circuit case ZR =0., so that

Zs = Zotanh yl

Before the open circuit case is considered, the input impedance should be
written. The input impedance of the open circuited line of length I, with ZR = o, is

Zoc = ZO COth yl

By multiplying the above two equations it can be seen that

ZO = Zochc

This is the same result as was obtained for a lumped network. The above equation
supplies a very valuable means of experimentally determining the value of z0 of a
line.

Also from the same two equations

(Z,.

tanhyl = [—
YZ.

—
W =tamh" ‘Z—

V2.

Use of this equation in experimental work requires the determination of the
hyperbolic tangent of a complex angle. If

Reflection coefficient:

A reflection coefficient, sometimes called reflection parameter, defines how much energy is
reflected from the load to the source of the RF systems. A reflection coefficient is also known as
s11 parameter. By definition, a reflected coefficient is a ration of the reflected wave and the
incident wave of the electric field strength. In the literature it is presented with the capital Greek
letter gamma (I).

The mismatch of a load Z, to a source Zg results in a reflection coefficient of;
I'=(Z-Zo)/(ZL+Z0)
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Note that the load can be a complex (real and imaginary) impedance. If you can't remember in
which order the numerator is subtracted (did we just say "Z(-Zo" or Zo-Z."?), you can always
figure it out by remembering that a short circuit (Z.=0) is on the left side of the

(angle = -180 degrees) which means I'=-1 in this case, which means that the minus sign
belongs in front of Z.

The magnitude of the reflection coefficient is given by:

p=mag(I')

For cases where Z__ is a real number,

p=abs((ZL-Zo)/(ZL+Zo))

Note that "abs" means "absolute value" here. VSWR can be calculated from the magnitude of the
reflection coefficient:

VSWR=(1+p)/(1-p)

For cases where Z is real, with a little algebra you'll see there are two cases for VSWR,
calculated from load impedance:

For Z. <Zo: VSWR=Z¢/Z,

For Z >Zo: VSWR=Z/Z¢

VSWR:
VSWR is an abbreviation for Voltage Standing Wave Ratio or sometimes in literature just SWR
(Standing Wave Ratio). The value of VSWR presents the power reflected from the load to the
source. It is often used to describe how much power is lost from the source (usually a High
Frequency Amplifier) through a transmission line (usually a coaxial cable) to the load (usually an
antenna).

How to express VSWR using voltage?

By the definition, VSWR is the ratio of the highest voltage (the maximum amplitude of the
standing wave) to the lowest voltage (the minimum amplitude of the standing wave) anywhere
between source and load.

VSWR = [V(max)|/ [V(min)|

V(max) = the maximum amplitude of the standing wave
Vmin) = the minimum amplitude of the standing wave

What is the ideal value of a VSWR?
The value of an ideal VSWR is 1:1 or shortly expressed as 1. In this case the reflected power
from the load to the source is zero.

How to express VSWR using an impedance?
By the definition, VSWR is the ratio of the load impedance and source impedance.
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The reflection coefficient can also be expressed in terms of the characteristic impedance of the inner
conductor and the matched load impedance as follows:

I = (2 - Zo)VZ, + Zp) (Eg. 5)

Where
Z; 15 the matched load impedance.
Zp 18 the characteristic impedance of the inner conductor.

Substituting (Eg.5) into (Fg.2), to obtain VSEWR in terms of Z; and Z,;:

ll + |2L —20”
ZL + Z0

ZL - Z0
ll - |ZL+ZJJ”
[ZL + 20 + |ZL — ZOI] . .
[ZL + Z0 — |ZL — zo|] 9-®

VSWR =

VSWR =

Solving (Eq.6) for,
Case 1: if &y = Zythen |Z, - Zp| = Z; - Zp

[ZL + ZO + ZL — ZO]
[ZL + ZO — ZL + Z0|

~ VSWR =

ZL

Z0

Case 2: if 7; < Zgthen |Z, - 7| = Zy— 2

_[ZL + Z0 + Z0 - ZL]
" |ZL + Z0 - Z0 + ZL)

Z0 o8
= 7L (Eq.8)

ZL = the load impedance
Zo = the source impedance

How to express a VSWR using reflection and forward power?
By the definition VSWR is equal to

VSWR = 1 +\(Pr/Pf) / 1 — \(Pr/Pf)
where:

Pr = Reflected power
Pf = Forward power
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Smith Chart:

The Smith Chart has been as a method to solve various RF design
problems - notably impedance matching with series and shunt components - and it provides a
convenient way to find these solutions without the use of a calculator. In order to understand the
construction of the chart, you'll need to understand high school algebra and the basics of
complex numbers, as well as have a basic understanding of impedance in electronic circuits. That
said, even if you don't fully understand the derivation below, you can still use the chart to help
you with your own design. By taking the standard reflection coefficient formula and
manipulating it so that it provides us with the equations for circles of various radii, we'll be able
to construct the basic Smith Chart. That's all the Smith Chart really is: a collection of circles,
each one centered in a different place in (or outside) the plot, and each one representing
either constant resistance or constant reactance

Deriving the Smith Chart

Once we get past the derivation, there will be a few simplified images showing how those
equations can be used and combined to get the final product. Let's get started by writing the
equation for the reflection coefficient of a load impedance, given a source impedance:

Z BOUTCE Z
T — L load

Zsfmw.'.:? LN Zloﬂ.n!

The reflection coefficient is just the ratio of the complex amplitude of a reflected wave to the
amplitude of the incident wave. This is the main equation we'll be using, but there will be some
quick transformations to it. First, we'll want to simplify it a little by normalizing the equation
with respect to Zioad, dividing each term on the right side:

Z.ﬂ'.l'l.l.r(.{' _ Zrand
Zload Zload

I' =

Z.ﬂ'.l'l.l.r(.{' e Zrand
Zigad Zlond

P:M

Zioad

At this point, recall that Z,, being an impedance of complex value, can be represented in the
form R + jX. Since the reflection coefficient (which is currently in polar form) can also be
represented in rectangular coordinates (we'll use A + jB for it), the above formula can be
transformed into this:
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R+ijX -1
R+jX+1

Great! At this point we've got the equation in the form we need to start constructing the Smith
Chart. The next step - solving for the real and imaginary parts of the equation - is probably the
most difficult part of the entire derivation, and even then you only need to understand the
concept of complex conjugates to do it. Let's go ahead and split it into real and imaginary
components, first by multiplying by the complex conjugate (it helps if you separate the existing
real and imaginary parts using brackets as shown below):

At this point we can separate the real and imaginary components. After that, there will be two
final simplifications to do before we'll have the equations to draw the Smith Chart. Here are the
separated real and imaginary parts (we'll call them Equations 1 and 2):

R? -1+ X2 :
A= TESVESE (Equation 1)

2X _
B = TES A€ (Equation 2)

Finally, you will want to do just a little more algebra (tedious, 1 know). Solving the real
component, A, for X2, you will get Equation 3:

, AR+1)P2-R'+1
X?= E IJ—A (Equation 3)

You can substitute this into Equation 2 to get the first of our two final equations, which allows us
to determine the circles of constant resistance (Equation 4):
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)2+ B = )? (Equation 4)

R+1

|:A_R+1

1 R
Does that look familiar? It's a circle, with a radius of B+ 1 and a centerof R+1" 7 By varying the value

of R in this equation, you can draw each of the circles in the Smith Chart.

Similarly, solving for R (I used Equation 2) will get you sclutions that look like this:

J/—BX(BX —2)-B
B

J/—BX(BX-2)-B
B

which, when substituted and simplified into Equation 1, will get you this result (Equation 5):

1

{sz (Equation 5)

Just like the previous result, this is a circle with radius 1/X but this time there are two sets of
circles (more on that in a bit), with centers at (1,1/X)These are circles (they appear as arcs on the
diagram) of constant reactance. Now you should see how the standard Smith Chart is drawn; it
consists of constant resistance circles graphed together with the constant reactance arcs. Below
you'll find some simplified images of both equations graphed separately and combined. But first,
let's talk about how to interpret the Smith Chart and its physical relevance.

There is quite a bit of information to obtain from analyzing the equations we've derived. Here are
just a few things of note:

» At infinite R and X, both types of circles converge to the same location (typically shown
on a Smith Chart at the far right or far left side of the diagram). This is at the point (1, 0).

» Setting R = 0 will result in a circle centered at (0, 0) on your chart with a radius of 1,
which is the "boundary™ of the chart.

» Approaching X = 0 results in an infinite radius; this is represented by a line crossing the
center of the chart. How do we interpret this? This is often called the real axis. In terms
of reactances, lines above the real axis in the chart (the positive arcs from the second
derived equation) represent inductive reactances, while those below (negative arcs)
represent capacitive reactances.
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» What happens if R < 0? The standard Smith Chart doesn't provide much detail about this,
but situations with R lying outside the boundary suggest oscillation in any would-be
circuit (which is pretty handy to know).

> Based on the knowledge we now have on resistance and reactance on the chart, we know
that every point represents a series combination of resistance and reactance (R + jX).
This'll help us when we want to do some plotting

Constant Resistance Circles:

Constant Reactance Arcs:

124



ELECTROMAGNETIC FIELDS AND TRANSMISSION LINES DEPT.ECE

Smith Chart:

Constant resistance and reactance circles plotted together

Applications of Smith Charts:

Smith charts find applications in all areas of RF Engineering. Some of the most popular
application includes;

Impedance calculations on any transmission line, on any load.

Admittance calculations on any transmission line, on any load.

Calculation of the length of a short-circuited piece of transmission line to provide a
required capacitive or inductive reactance.

Impedance matching.

Determining VSWR among others.
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